P $A=-14$

IABU Headquarter
Delta Electronics, Inc
Taoyuan3
No. 18, Xin
No. 18 , Xinglong Rd., Taoyuan City,
Taoyuan County 330 , Taiwan R
Taoyuan County 330, Taiwan, R.O.C.
TEL: $886-3-362-6301$ / FAX: $886-3-371-6301$

Asia
 Delta Electronics (Jiangsu) Ltd.

Wujiang Plant3
1688 Jiangxing
1688 Jiangxing East Road
Wujiang City, Jiac Development Zone
Puple's Rity, Jiang Su Province,
TEL: 86-512-6340-3008/FAX: 86-769-6340-7290
Delta Greentech (China) Co., Ltt.
238 Min-Xia Road, Cao-Lu Industry Zone,Pudong, Shanghai,
People's Republic of
Post code: 201209
TEL: 021-58635678/FAX: 021-58630003
Delta Electronics (Japan), Inc.
Tokyo Office
2-1-14 Minato-ku Shibadaimon,
Tokyo 105-0012
Tokyo 105-0012, Japan
TEL:
81-3-5733-1111/F
Delta Electronics (Korea), Inc
uilding 7F, Nonhyun-Dong
Kangnam-Gu, Seoul, Korea 135-010
TEL: $82-2-515-5305 / F A X: 82-2-515-5302$

Delta Electronics Int'I (S) Pte Ltd 4 Kaki Bukit Ave 1, \#05-05, Singapore 41793
TEL: $65-6747-5155 /$ FAX: $65-6744-9228$

Delta Electronics (India) Pvt. Ltd.
Plot No. 43, Sector - 35, HSIIDC,
Gurgaon122001, Haryana, India

Americas

Delta Products Corporation (USA)
Delta Products
P.O. Box 12173,5101 Davis Drive,

Research Triangle Park, NC 27709, U.S.A.
Delta Greentech (Brasil) S.A
Sao Paulo Office
Rual Itapeva, 26 -30 Andar Edificio Itapeva One-Bela Vista
01332-000-Sao Paulo-SP-Braz
TEL: +55113568 .
Europe
Deltronics (The Netherlands) B.V.
Eindhoven Office
De Witbogt 15,5652AG Eindhoven, The Netherlands
TEL: 31-40-2592850 / FAX: 31-40-2592851

Delta Intelligent Vector Control Drive C200 Series User Manual

Preface

Thank you for choosing DELTA's high-performance VFD-C200 Series. The VFD-C200 Series is manufactured with high-quality components and materials and incorporate the latest microprocessor technology available.

This manual is to be used for the installation, parameter setting, troubleshooting, and daily maintenance of the AC motor drive. To guarantee safe operation of the equipment, read the following safety guidelines before connecting power to the AC motor drive. Keep this operating manual at hand and distribute to all users for reference.

To ensure the safety of operators and equipment, only qualified personnel familiar with AC motor drive are to do installation, start-up and maintenance. Always read this manual thoroughly before using VFD-C200 series AC Motor Drive, especially the DANGER and CAUTION notes. Failure to comply may result in personal injury and equipment damage. If you have any questions, please contact your dealer.

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

| \square | AC input power must be disconnected before any wiring to the AC motor drive is made. |
| :--- | :--- | :--- |
| Even if the power has been turned off, a charge may still remain in the DC-link | |
| capacitors with hazardous voltages before the POWER LED is OFF. Please do not | |
| touch the internal circuit and components. | |

[^0]
Table of Contents

CHAPTER 1 INTRODUCTION 1-1
CHAPTER 2 INSTALLATION 2-1
CHAPTER 3 HOW TO SELECT THE RIGHT AC MOTOR DIRVE 3-1
CHAPTER 4 WIRING 4-1
CHAPTER 5 MAIN CIRCUIT TERMINALS 5-1
CHPATER 6 CONTROL TERMINALS 6-1
CHAPTER 7 OPTIONAL ACCESSORIES. 7-1
CHAPTER 8 SPECIFICATION 8-1
CHAPTER 9 DIGITAL KEYPAD $.9-1$
CHAPTER 10 SUMMARPY OF PARAMETERS 10-1
CHAPTER 11 DESCRIPTION OF PARAMETER SETTINGS. 11-1
CHPAPTER 12 WARNING CODES. 12-1
CHAPTER 13 CANOPEN OVERVIEW $.13-1$
CHAPTER 14 PLC FUNCTION 14-1
CHAPTER 15 SUGGESTIONS AND ERROR CORRECTIONS FOR STANDARD AC MOTOR DRIVES 15-1

Chapter 1 Introduction

Receiving and Inspection

After receiving the AC motor drive, please check for the following:

1. Please inspect the unit after unpacking to assure it was not damaged during shipment. Make sure that the part number printed on the package corresponds with the part number indicated on the nameplate.
2. Make sure that the voltage for the wiring lie within the range as indicated on the nameplate. Please install the AC motor drive according to this manual.
3. Before applying the power, please make sure that all the devices, including power, motor, control board and digital keypad, are connected correctly.
4. When wiring the $A C$ motor drive, please make sure that the wiring of input terminals "R/L1, S/L2, T/L3" and output terminals"U/T1, V/T2, W/T3" are correct to prevent drive damage.
5. When power is applied, select the language and set parameter groups via the digital keypad (KPE-LE02). When executes trial run, please begin with a low speed and then gradually increases the speed untill the desired speed is reached.

Nameplate Information

Model Name

Serial Number

RFI Jumper

RFI Jumper: The AC motor drive may emit the electrical noise. The RFI jumper is used to suppress the interference (Radio Frequency Interference) on the power line.

Frame A0~A Screw Torque: $8 \sim 10 \mathrm{~kg}-\mathrm{cm}(6.9-8.7 \mathrm{lb}-\mathrm{in}$.
Loosen the screws and remove the MOV-PLATE. Fasten the screws back to the original position after MOV-PLATE is removed.
Frame A0

Frame A

Main power isolated from earth:
If the AC motor drive is supplied from an isolated power (IT power), the RFI jumper must be cut off. Then the RFI capacities (filter capacitors) will be disconnected from ground to prevent circuit damage (according to IEC 61800-3) and reduce earth leakage current.

CAUTION:

1. When power is applied to the AC motor drive, do not cut off the RFI jumper.
2. Make sure main power is switched off before cutting the RFI jumper.
3. The gap discharge may occur when the transient voltage is higher than $1,000 \mathrm{~V}$. Besides, electro-magnetic compatibility of the AC motor drives will be lower after cutting the RFI jumper.
4. Do NOT cut the RFI jumper when main power is connected to earth.
5. The RFI jumper cannot be cut when Hi-pot tests are performed. The mains power and motor must be separated if high voltage test is performed and the leakage currents are too high.
6. To prevent drive damage, the RFI jumper connected to ground shall be cut off if the AC motor drive is installed on an ungrounded power system or a high resistance-grounded (over 30 ohms) power system or a corner grounded TN system.

Dimensions

Frame A0
VFD004CB21A-20; VFD007CB21A-20; VFD004CB23A-20; VFD007CB23A-20; VFD007CB43A-20; VFD015CB43A-20;
VFD015CB23A-20 (Fan Module included)

See Detail B

Detail A (Mounting Hole)

Detail B (Mounting Hole)

Frame A0
VFD015CB21A-20; VFD022CB21A-20; VFD022CB23A-20; VFD037CB23A-20; VFD022CB43A-20; VFD037CB43A-20;

See Detail B

Detail A (Mounting Hole)

Detail B (Mounting Hole)

W	H	D	W1	H1	D1	S1	101	12	$\Phi 3$
110.0	180.0	151.0	99.6	169.0	142.0	5.5			
$[4.33]$	$[7.09]$	$[5.94]$	$[3,92]$	$[6.65]$	$[5.59]$	$[0.22]$	-	-	-

Frame A0
VFD007CB43A-21; VFD015CB43A-21; VFD004CB23A-21; VFD007CB23A-21; VFD004CB21A-21; VFD007CB21A-21;
VFD015CB23A-21 (Fan Module included)

Detail A (Mounting Hole)

Detail B (Mounting Hole)

W	H	D	W1	H1	H2	D1	S1	Ф1	Ф2	Ф3
$\begin{array}{r} 110.0 \\ {[4.33]} \\ \hline \end{array}$	$\begin{aligned} & 200.0 \\ & {[7.87]} \end{aligned}$	$\begin{aligned} & 160.0 \\ & {[6.30]} \end{aligned}$	$\begin{gathered} 99.6 \\ {[3,92]} \end{gathered}$	$\begin{aligned} & 180.0 \\ & {[7.09]} \end{aligned}$	$\begin{aligned} & 169.0 \\ & {[6.65]} \end{aligned}$	$\begin{aligned} & 151.0 \\ & {[5.94]} \end{aligned}$	$\begin{gathered} 5.5 \\ {[0.22]} \end{gathered}$	-	-	-

Frame A0

VFD022CB43A-21; VFD037CB43A-21; VFD022CB23A-21; VFD037CB23A-21; VFD015CB21A-21; VFD022CB21A-21;

Detail A (Mounting Hole)

Detail B (Mounting Hole)

W	H	D	W 1	H 1	H 2	D 1	S 1	$\Phi 1$	$\Phi 2$	Unit: mm inch]
110.0	200.0	151.0	99.6	180.0	169.0	142.0	5.5			
$[4.33]$	$[7.87]$	$[5.94]$	$[3,92]$	$[7.09]$	$[6.65]$	$[5.59]$	$[0.22]$	-	-	-

Frame A0
VFD004CB21A-21M; VFD004CB23A-21M; VFD007CB21A-21M; VFD007CB23A-21M; VFD007CB43A-21M; VFD015CB43A-21M; VFD015CB23A-21M (Fan Module included)

Detail B (Mounting Hole)

W	H	D	W1	H1	D1	S1	1 1	2 Unit: mm [inch]	33
110.0	200.0	160.0	99.6	180.0	151.0	5.5	-	-	-
$[4.33]$	$[7.87]$	$[6.30]$	$[3,92]$	$[7.09]$	$[5.94]$	$[0.22]$			

Frame A0
VFD015CB21A-21M; VFD022CB21A-21M; VFD022CB23A-21M; VFD037CB23A-21M; VFD022CB43A-21M; VFD037CB43A-21M;

Unit: mm [inch]

W	H	D	W 1	H 1	D 1	S 1	Ф1	Ф2	Ф3
110.0	200.0	151.0	99.6	180.0	142.0	5.5	-	-	-
$[4.33]$	$[7.87]$	$[5.94]$	$[3,92]$	$[7.09]$	$[5.59]$	$[0.22]$	-	-	-

Frame A
VFD040CB43A-20; VFD055CB43A-20; VFD075CB43A-20;
VFD040CB43A-21; VFD055CB43A-21; VFD075CB43A-21

Detail A (Mounting Hole)

Detail B (Mounting Hole)

W	H	D	W1	H1	D1	S1	¢1	\$2	Ф3
$\begin{aligned} & 130.0 \\ & {[5.12} \end{aligned}$	$\begin{aligned} & \hline 250.0 \\ & {[9.84]} \end{aligned}$	$\begin{aligned} & 179.0 \\ & {[7.05]} \end{aligned}$	$\begin{gathered} 116.0 \\ {[4.57]} \end{gathered}$	$\begin{aligned} & \hline 236.0 \\ & {[9.29]} \end{aligned}$	170.0 [6.69]	$\begin{gathered} 6.2 \\ {[0.24]} \end{gathered}$	$\begin{gathered} 22.2 \\ {[0.87]} \end{gathered}$	$\begin{gathered} 34.0 \\ {[1.34]} \end{gathered}$	$\begin{gathered} \hline 28.0 \\ {[1.10]} \end{gathered}$

Frame A
VFD040CB43A-21M; VFD055CB43A-21M; VFD075CB43A-21M;

Unit: mm [inch]

W	H	D	W 1	H 1	D 1	S 1	Ф1	Ф2	Ф3
130.0	250.0	179.0	116.0	236.0	170.0	6.2	22.2	34.0	28.0
$[5.12]$	$[9.84]$	$[7.05]$	$[4.57]$	$[9.29]$	$[6.69]$	$[0.24]$	$[0.87]$	$[1.34]$	$[1.10]$

Digital Keypad
KPE-LE02

Chapter 2 Installation

Minimum Mounting Clearance and Installation

NOTE

■ Prevent fiber particles, scraps of paper, shredded wood saw dust, metal particles, etc. from adhereing to the heat sink

■
Install the AC motor drive in a metal cabinet. When installing one drive below another one, use a metal separation between the AC motor drives to prevent mutual heating and to prevent the risk of fire accident.
■ Install the AC motor drive in Pollution Degree 2 environments only: normallyl only nonconductive pollution occurs and temporary conductivity caused by condensation is expected.
The appearances shown in the following figures are for reference only.
Airflow direction: \qquad (Blue arrow) inflow
4 (Red arrow) outflow

Multiple drives, side-by-side installation

Multiple drives side-by-side installation and in rows
When installing one AC motor drive below another one (top-bottom installation), use a metal separation between the drives to prevent mutual heating. The temperature measured at the fan's inflow side must be lower than the temperature measured at the operation side. If the fan's inflow temperature is higher, use a thicker or larger size of metal seperature. Operation temperature is the temperature measured at 50 mm away from the fan's inflow side. (As shown in the figure below)

Minimum mounting clearance

Frame	$\mathrm{A}(\mathrm{mm})$	$\mathrm{B}(\mathrm{mm})$	$\mathrm{C}(\mathrm{mm})$	$\mathrm{D}(\mathrm{mm})$
AO-A	60	30	10	0

Frame A0 VFD004CB21A-20/-21/-21M; VFD007CB21A-20/-21/-21M; VFD004CB23A-20/-21/-21M; VFD007CB23A-20/-21/-21M; VFD015CB23A-20/-21/-21M; VFD007CB43A-20/-21/-21M; VFD015CB43A-20/-21/-21M; VFD015CB21A-20/-21/-21M; VFD022CB21A-20/-21/-21M; VFD022CB23A-20/-21/-21M; VFD037CB23A-20/-21/-21M; VFD022CB43A-20/-21/-21M; VFD037CB43A-20/-21/-21M;
Frame A VFD040CB43A-20/-21/-21M; VFD055CB43A-20/-21/-21M; VFD075CB43A-20/-21/-21M;

(${ }^{\text {NOTE }}$

1. The minimum mounting clearances stated in the table above applies to AC motor drives frame A to D. A drive fails to follow the minimum mounting clearances may cause the fan to malfunction and heat dissipation problem.

Derating Curve Diagram of Normal Duty (Pr.00-16=0)

- Set Pr.06-55 = 1
- Set Pr.06-55 = 0 or 2
$\left(50^{\circ} \mathrm{C}\right.$: UL open-type)
$\left(40^{\circ} \mathrm{C}\right.$:UL type1 or open type_size by size)
460 V

- Set Pr.06-55 = 1
- Set Pr.06-55 $=0$ or 2
$\left(50^{\circ} \mathrm{C}\right.$: UL open-type)
($40^{\circ} \mathrm{C}$:UL type1 or open type_size by size) 230V

- Set Pr.06-55 = 0 or 2
$\left(40^{\circ} \mathrm{C}\right.$: UL open-type)
$\left(30^{\circ} \mathrm{C}\right.$: UL type1 or open type_size by size)

460V

- Set Pr.06-55 $=0$ or 2
$\left(40^{\circ} \mathrm{C}\right.$: UL open-type)
$\left(30^{\circ} \mathrm{C}\right.$: UL type1 or open type_size by size $)$

230V

Derating Curve Diagram of Heavy Duty (Pr.00-16=1)

- Set Pr.06-55 = 1
- Set Pr.06-55 = 0 or 2
($50^{\circ} \mathrm{C}$: UL open-type)
($40^{\circ} \mathrm{C}$: UL type1 or open type_size by size)
230 V

- Set Pr.06-55 $=0$ or 2
($40^{\circ} \mathrm{C}$: UL open-type)
($30^{\circ} \mathrm{C}$: UL type1 or open type_size by size)

460 V

- Set Pr.06-55 $=0$ or 2
($40^{\circ} \mathrm{C}$: UL open-type)
$\left(30^{\circ} \mathrm{C}\right.$: UL type1 or open type_size by size)

230 V

Chapter 3 How to Select the Right AC Motor Drive

The choice of the right AC motor drive for the application is very important and has great influence on its lifetime. If the capacity of AC motor drive is too large, it cannot offer complete protection to the motor and motor maybe damaged. If the capacity of AC motor drive is too small, it cannot offer the required performance and the AC motor drive maybe damaged due to overloading.

But by simply selecting the AC motor drive of the same capacity as the motor, user application requirements cannot be met completely. Therefore, a designer should consider all the conditions, including load type, load speed, load characteristic, operation method, rated output, rated speed, power and the change of load capacity. The following table lists the factors you need to consider, depending on your requirements.

Item		Related Specification			
		Speed and torque characteristics	Time ratings	Overload capacity	Starting torque
Load type	Friction load and weight load Liquid (viscous) load Inertia load Load with power transmission	\bigcirc			\bigcirc
Load speed and torque characteristics	Constant torque Constant output Decreasing torque Decreasing output	\bigcirc	\bigcirc		
Load characteristics	Constant load Shock load Repetitive load High starting torque Low starting torque	\bigcirc	-	\bigcirc	-
Continuous operation, Short-time operation Long-time operation at medium/low speeds			\bullet	\bigcirc	
Maximum output current (instantaneous) Constant output current (continuous)		\bullet		\bigcirc	
Maximum frequency, Base frequency		\bigcirc			
Power supply transformer capacity or percentage impedance Voltage fluctuations and unbalance Number of phases, single phase protection Frequency				\bigcirc	\bullet
Mechanical friction, losses in wiring				-	-
Duty cycle modification			-		

3-1 Capacity Formulas

1. When one AC motor drive operates one motor

The starting capacity should be less than $1.5 x$ rated capacity of $A C$ motor drive The starting capacity=
$\frac{\mathrm{k} \times \mathrm{N}}{973 \times \eta \times \cos \varphi}\left(\mathrm{T}_{\mathrm{L}}+\frac{\mathrm{GD}^{2}}{375} \times \frac{\mathrm{N}}{\mathrm{t}_{\mathrm{A}}}\right) \leq 1.5 \times$ the_capacity_of_AC_motor_drive (kVA)

2. When one AC motor drive operates more than one motor

2.1 The starting capacity should be less than the rated capacity of AC motor drive

- Acceleration time $\leqq 60$ seconds

The starting capacity=

$$
\frac{k \times N}{\eta \times \cos \varphi}\left[n_{t}+n_{s}\left(k_{s-1}\right)\right]=P_{c \mid}\left[1+\frac{n_{s}}{n_{t}}\left(k_{s-1}\right)\right] \leq 1.5 \times \text { the_capacity_of_AC_motor_drive(kVA) }
$$

- Acceleration time $\geqq 60$ seconds

The starting capacity=

$$
\frac{k \times N}{\eta \times \cos \varphi}\left[n_{t}+n_{s}\left(k_{s-1}\right)\right]=P_{c}\left[1+\frac{n_{t}}{n_{t}}\left(k_{s-1}\right)\right] \leq \text { the_capacity_of _AC_motor_drive }(k V A)
$$

2.2 The current should be less than the rated current of AC motor drive(A)

- Acceleration time $\leqq 60$ seconds

$$
n_{x}+I_{s}\left[1+\frac{n_{s}}{n_{r}}\left(k_{s}-1\right)\right] \leq 1.5 \times \text { the_rated_current_of _AC_motor_drive(A) }
$$

- Acceleration time $\geqq 60$ seconds
$n_{T}+I_{M}\left[1+n_{n_{s}}\left(k_{s}-1\right)\right] \leq$ the _rated _current_of _AC_motor_drive (A)
2.3 When it is running continuously
- The requirement of load capacity should be less than the capacity of AC motor drive(kVA)
The requirement of load capacity=

$$
\frac{k \times P_{M}}{\eta \times \cos \varphi} \leq t h e_{-} \text {capacity_of } A C_{-} \text {motor_drive }(k V A)
$$

- The motor capacity should be less than the capacity of $A C$ motor drive $k \times \sqrt{3} \times V_{M} \times I_{M} \times 10^{-3} \leq t h e$ _capacity_of _AC _motor_drive($k V A$)
- The current should be less than the rated current of $A C$ motor drive(A) $k \times I_{M} \leq t h e$ _rated _current_of _AC_motor_drive (A)

Symbol explanation

$P_{M} \quad$: Motor shaft output for load (kW)
$\eta \quad$: Motor efficiency (normally, approx. 0.85)
$\cos \varphi \quad:$ Motor power factor (normally, approx. 0.75)
$V_{M} \quad$: Motor rated voltage(V)
$I_{M} \quad$: Motor rated current(A), for commercial power
k : Correction factor calculated from current distortion factor (1.05-1.1, depending on PWM method)
$P_{c l} \quad$: Continuous motor capacity (kVA)
ks : Starting current/rated current of motor
$n_{T} \quad$: Number of motors in parallel
$n_{s} \quad$: Number of simultaneously started motors
$G D^{2} \quad$: Total inertia $\left(G D^{2}\right)$ calculated back to motor shaft $\left(\mathrm{kg} \mathrm{m}^{2}\right)$
$T_{L} \quad$: Load torque
$t_{A} \quad$: Motor acceleration time
N : Motor speed

3-2 General Precaution

Selection Note

1. When the AC Motor Drive is connected directly to a large-capacity power transformer (600kVA or above) or when a phase lead capacitor is switched, excess peak currents may occur in the power input circuit and the converter section may be damaged. To avoid this, use an AC input reactor (optional) before AC Motor Drive mains input to reduce the current and improve the input power efficiency.
2. When a special motor is used or more than one motor is driven in parallel with a single AC Motor Drive, select the AC Motor Drive current $\geq 1.25 x$ (Sum of the motor rated currents).
3. The starting and accel./decel. characteristics of a motor are limited by the rated current and the overload protection of the AC Motor Drive. Compared to running the motor D.O.L. (Direct On-Line), a lower starting torque output with AC Motor Drive can be expected. If higher starting torque is required (such as for elevators, mixers, tooling machines, etc.) use an AC Motor Drive of higher capacity or increase the capacities for both the motor and the AC Motor Drive.
4. When an error occurs on the drive, a protective circuit will be activated and the AC Motor Drive output is turned off. Then the motor will coast to stop. For an emergency stop, an external mechanical brake is needed to quickly stop the motor.

Parameter Settings Note

1. The AC Motor Drive can be driven at an output frequency up to 400 Hz (less for some models) with the digital keypad. Setting errors may create a dangerous situation. For safety, the use of the upper limit frequency function is strongly recommended.
2. High DC brake operating voltages and long operation time (at low frequencies) may cause overheating of the motor. In that case, forced external motor cooling is recommended.
3. Motor accel./decel. time is determined by motor rated torque, load torque, and load inertia.
4. If the stall prevention function is activated, the accel./decel. time is automatically extended to a length that the AC Motor Drive can handle. If the motor needs to decelerate within a certain time with high load inertia that can't be handled by the AC Motor Drive in the required time, either use an external brake resistor and/or brake unit, depending on the model, (to shorten deceleration time only) or increase the capacity for both the motor and the AC Motor Drive.

3-3 How to Choose a Suitable Motor

Standard motor

When using the AC Motor Drive to operate a standard 3-phase induction motor, take the following precautions:

1. The energy loss is greater than for an inverter duty motor.
2. Avoid running motor at low speed for a long time. Under this condition, the motor temperature may rise above the motor rating due to limited airflow produced by the motor's fan. Consider external forced motor cooling.
3. When the standard motor operates at low speed for long time, the output load must be decreased.
4. The load tolerance of a standard motor is as follows:

5. If 100% continuous torque is required at low speed, it may be necessary to use a special inverter duty motor.
6. Motor dynamic balance and rotor endurance should be considered once the operating speed exceeds the rated speed $(60 \mathrm{~Hz})$ of a standard motor.
7. Motor torque characteristics vary when an AC Motor Drive instead of commercial power supply drives the motor. Check the load torque characteristics of the machine to be connected.
8. Because of the high carrier frequency PWM control of the VFD series, pay attention to the following motor vibration problems:
■ Resonant mechanical vibration: anti-vibration (damping) rubbers should be used to mount equipment that runs at varying speed.
■ Motor imbalance: special care is required for operation at 50 or 60 Hz and higher frequency.

- To avoid resonances, use the Skip frequencies.

9. The motor fan will be very noisy when the motor speed exceeds 50 or 60 Hz .

Special motors:

1. Pole-changing (Dahlander) motor:

The rated current is differs from that of a standard motor. Please check before operation and select the capacity of the AC motor drive carefully. When changing the pole number the motor needs to be stopped first. If over current occurs during operation or regenerative voltage is too high, please let the motor free run to stop (coast).
2. Submersible motor:

The rated current is higher than that of a standard motor. Please check before operation and choose the capacity of the AC motor drive carefully. With long motor cable between AC motor drive and motor, available motor torque is reduced.
3. Explosion-proof (Ex) motor:

Needs to be installed in a safe place and the wiring should comply with the (Ex) requirements. Delta AC Motor Drives are not suitable for (Ex) areas with special precautions.
4. Gear reduction motor:

The lubricating method of reduction gearbox and speed range for continuous operation will be
different and depending on brand. The lubricating function for operating long time at low speed and for high-speed operation needs to be considered carefully.
5. Synchronous motor:

The rated current and starting current are higher than for standard motors. Please check before operation and choose the capacity of the AC motor drive carefully. When the AC motor drive operates more than one motor, please pay attention to starting and changing the motor.

Power Transmission Mechanism

Pay attention to reduced lubrication when operating gear reduction motors, gearboxes, belts and chains, etc. over longer periods at low speeds. At high speeds of $50 / 60 \mathrm{~Hz}$ and above, lifetime reducing noises and vibrations may occur.

Motor torque

The torque characteristics of a motor operated by an AC motor drive and commercial mains power are different.
Below you'll find the torque-speed characteristics of a standard motor (4-pole, 15kW):

Motor

Chapter 4 Wiring

After removing the front cover, examine if the power and control terminals are clearly noted. Please read following precautions before wiring.

च Make sure that power is only applied to the R/L1, S/L2, T/L3 terminals. Failure to comply may result in damage to the equipments. The voltage and current should lie within the range as indicated on the nameplate (Chapter 1-1).
∇ All the units must be grounded directly to a common ground terminal to prevent lightning strike or electric shock.
\square Please make sure to fasten the screw of the main circuit terminals to prevent sparks which is made by the loose screws due to vibration
\square It is crucial to turn off the AC motor drive power before any wiring installation are made. A charge may still remain in the DC bus capacitors with hazardous voltages even if the power has been turned off therefore it is suggested for users to measure the remaining voltage before wiring. For your personnel saftery, please do not perform any wiring before the voltage drops to a safe level < 25 Vdc . Wiring installation with remaninig voltage condition may caus sparks and short circuit.

च Only qualified personnel familiar with AC motor drives is allowed to perform installation, wiring and commissioning. Make sure the power is turned off before wiring to prevent electric shock.

\square When wiring, please choose the wires with specification that complys with local regulation for your personnel safety.
\square Check following items after finishing the wiring:

1. Are all connections correct?
2. Any loosen wires?
3. Any short-circuits between the terminals or to ground?

WiringDiagram

Figure 1
SINK (NPN) /SOURCE (PNP) Mode

(3) Sink Mode
with external power

(4) Source Mode with external power

Chapter 5 Main Circuit Terminals

Main Circuit Diagram

For frame A0

* Provide 1-phase/3-phase input power

Brake resistor (optional)

Terminals	Descriptions
R/L1, S/L2, T/L3	AC line input terminals 3-phase; AC line input terminals 1-phase (R/L1, S/L2);
U/T1, V/T2, W/T3	AC drive output terminals for connecting 3-phase induction motor
DC+, DC-	Connections for brake unit (VFDB series)
B1, B2	Connections for brake resistor (optional)
\bigcirc	Earth connection, please comply with local regulations.
For frame A * Provide 3-phase in $\begin{aligned} & \text { Fuse/NFB(No } \\ & \text { R(L1)- } \\ & \text { S(L2) } \\ & \text { T(L3) }-6 \end{aligned}$	

Terminals	Descriptions
R/L1, S/L2, T/L3	AC line input terminals 3-phase
U/T1, V/T2, W/T3	AC drive output terminals for connecting 3-phase induction motor
$+1,+2$	Connections for DC reactor to improve the power factor. It needs to remove the jumper for installation.
$+1 / D C+$, /DC-	Connections for brake unit (VFDB series)
B1, B2	Connections for brake resistor (built-in)
Θ	Earth connection, please comply with local regulations.

Main power terminals
$\checkmark \quad$ Do not connect 3-phase model to one-phase power. R/L1, S/L2 and T/L3 has no phase-sequence requirement, it can be used upon random selection.
$\square \quad$ It is recommend to add a magnetic contactor (MC) to the power input wiring to cut off power quickly and reduce malfunction when activating the protection function of the AC motor drive. Both ends of the MC should have an R-C surge absorber.
$\checkmark \quad$ Fasten the screws in the main circuit terminal to prevent sparks condition made by the loose screws due to vibration.
$\checkmark \quad$ Please use voltage and current within the specification.
■ When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200 mA or above and not less than 0.1 -second operation time to avoid nuisance tripping.
$\checkmark \quad$ Please use the shield wire or tube for the power wiring and ground the two ends of the shield wire or tube.
\checkmark Do NOT run/stop AC motor drives by turning the power ON/OFF. Run/stop AC motor drives by RUN/STOP command via control terminals or keypad. If you still need to run/stop AC motor drives by turning power ON/OFF, it is recommended to do so only ONCE per hour.

Output terminals for main circuit

\checkmark When it needs to install the filter at the output side of terminals U/T1, V/T2, W/T3 on the AC motor drive. Please use inductance filter. Do not use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless approved by Delta.

చ DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals of AC motor drives.
\square Use well-insulated motor, suitable for inverter operation.
Terminals for connecting DC reactor, external brake resistor, external brake resistor and DC circuit
\square This is the terminals used to connect the DC reactor to improve the power factor. For the factory setting, it connects the short-circuit object. Please remove this short-circuit object before connecting to the DC reactor.

\square When the AC Motor Drive is connected directly to a large-capacity power transformer (600 kVA or above) or when a phase lead capacitor is switched, excess peak currents may occur in the power input circuit due to the load changes and the converter section may be damaged. To
avoid this, it is recommend to use a serial connected AC input reactor(6\%) at the AC Motor Drive mains input side to reduce the current and improve the input power efficiency.

■ Connect a brake resistor or brake unit in applications with frequent deceleration ramps, short deceleration time, too low brake torque or requiring increased brake torque.

Brake resistor
(optional)

B1
B2
\square The external brake resistor should connect to the terminals (B1, B2) of AC motor drives.
\square For those models without built-in brake resistor, please connect external brake unit and brake resistor (both of them are optional) to increase brake torque.
च DC+ and DC- are connected by common DC bus, please refer to Chapter 5-1(Main Circuit Terminal) for the wiring terminal specification and the wire gauge information.
\square Please refer to the VFDB manual for more information on wire gauge when installing the brake unit.

5-1 Main Circuit Terminals

Frame AO

Main circuit terminals:
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3,$D C+, D C-, B 1, B 2$

Models	Max. Wire Gauge	Min. Wire Gauge	$\begin{aligned} & \text { Torque } \\ & (\pm 10 \%) \end{aligned}$
VFD004CB21A-20/-21/-21M	8 AWG ($8.4 \mathrm{~mm}^{2}$)	14 AWG (2.1 mm ${ }^{2}$)	$\begin{gathered} \mathrm{M} 4 \\ 20 \mathrm{~kg}-\mathrm{cm} \\ (17.4 \mathrm{lb}-\mathrm{in} .) \\ (1.96 \mathrm{Nm}) \end{gathered}$
VFD007CB21A-20/-21/-21M		12 AWG (3.3mm ${ }^{2}$)	
VFD015CB21A-20/-21/-21M		10 AWG ($5.3 \mathrm{~mm}^{2}$)	
VFD022CB21A-20/-21/-21M		8 AWG (8.4mm²)	
VFD004CB23A-20/-21/-21M		14 AWG ($2.1 \mathrm{~mm}^{2}$)	
VFD007CB23A-20/-21/-21M		14 AWG ($2.1 \mathrm{~mm}^{2}$)	
VFD015CB23A-20/-21/-21M		12 AWG ($3.3 \mathrm{~mm}^{2}$)	
VFD022CB23A-20/-21/-21M		10 AWG ($5.3 \mathrm{~mm}^{2}$)	
VFD037CB23A-20/-21/-21M		8 AWG (8.4mm ${ }^{2}$)	
VFD007CB43A-20/-21/-21M		14 AWG ($2.1 \mathrm{~mm}^{2}$)	
VFD015CB43A-20/-21/-21M		14 AWG ($2.1 \mathrm{~mm}^{2}$)	
VFD022CB43A-20/-21/-21M		14 AWG ($2.1 \mathrm{~mm}^{2}$)	
VFD037CB43A-20/-21/-21M		10 AWG ($5.3 \mathrm{~mm}^{2}$)	

UL installations must use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ wire. Use copper wire only.

D, NOTE

Figure 1 shows the terminal specification.
Figure 2 shows the specification of insulated heat shrink tubing that comply with UL
(600V, YDPU2).

Figure 1

Figure 2

Frame A

Main circuit terminals :
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, $\left.{ }^{(}\right), \mathrm{DC}+(+2,+1), \mathrm{DC}-, \mathrm{B} 1, \mathrm{~B} 2$

Models	Max. Wire Gauge	Min. Wire Gauge	$\begin{aligned} & \text { Torque } \\ & (\pm 10 \%) \end{aligned}$
VFD040CB43A-20/-21/-21M	8 AWG ($8.4 \mathrm{~mm}^{2}$)	10 AWG (5.3mm ${ }^{2}$)	M 4$20 \mathrm{~kg}-\mathrm{cm}$$(17.4 \mathrm{lb}-\mathrm{in}$.$(1.96 \mathrm{Nm})$
VFD055CB43A-20/-21/-21M		10 AWG (5.3mm ${ }^{2}$)	
VFD075CB43A-20/-21/-21M		8 AWG (8.4mm ${ }^{2}$)	

UL installations must use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ wire. Use copper wire only.
NOTE
Figure 1 shows the terminal specification.
Figure 2 shows the specification of insulated heat shrink tubing that comply with UL (600V, YDPU2).

Figure 1

Figure 2

Chapter 6 Control Terminals

Please remove the top cover before wiring the multi-function input and output terminals,
The drive appearances shown in the figures are for reference only, a real drive may look different.
Remove the cover for wiring.
Frame A0\&A
Loosen the screws and press the tabs on both sides to remove the cover.
Screw torque:
Frame A0: 6~8Kg-cm [5.21~6.94lb-in.]
Frame A : 10~12Kg-cm [8.68~10.4lb-in.]

Frame AO Remove the Conduit-Box

1. Remove the cover, and then loosen the screws of wiring guard. Keep those screws for future use.

NOTE: C200-21 /-21M doesn't have a plastic circuit board.
2. Use spare screws to fasten the Conduit box. Screw torque: 8 -10Kg-cm(6.9-8.7Ib-in.)

3. Put back the cover then fasten tightly the screw. Screw torque (M3): 6-8Kg-cm(5.2-6.91b-in.)

Control Terminal the sketch map

Frame A0

Frame A

Specifications of Control Terminal

Wire Gauge: 26~16AWG ($\left.0.1281-1.318 \mathrm{~mm}^{2}\right)$,
Torque: (A) $5 \mathrm{~kg}-\mathrm{cm}$ [4.31lb-in.] (0.49 Nm) (As shown in figure above)
(B) $8 \mathrm{~kg}-\mathrm{cm}[6.94 \mathrm{lb}-\mathrm{in}].(0.78 \mathrm{Nm})$ (As shown in figure above)

Wiring precautions:

- Reserves 5 mm and properly install the wire into the terminal; fasten the installation by a slotted screwdriver. If the wire is stripped, sort the wire before install into the terminal.
- Flathead screwdriver: blade width 3.5 mm , tip thickness 0.6 mm
- In the figure above, the factory setting for S1-SCM is short circuit. The factory setting for $+24 \mathrm{~V}-\mathrm{COM}$ is short circuit and SINK mode (NPN); please refer to Chapter 4 Wiring for more detail.

Terminals	Terminal Function	Factory Setting (NPN mode)
+24V	Digital control signal common (Source)	+24V $\pm 5 \% 100 \mathrm{~mA}$
COM	Digital control signal common (Sink)	Common for multi-function input terminals
FWD	Forward-Stop command	FWD-DCM: ON \rightarrow forward running OFF \rightarrow deceleration to stop
REV	Reverse-Stop command	REV-DCM: $\mathrm{ON} \rightarrow$ reverse running OFF \rightarrow deceleration to stop
$\begin{gathered} \text { MI1 } \\ \underset{\sim}{\text { MI6 }} \end{gathered}$	Multi-function input 1~6	Refer to parameters 02-01~02-08 to program the multi-function inputs MI1~MI8. ON : the activation current is $6.5 \mathrm{~mA} \geqq 11 \mathrm{Vdc}$ OFF: leakage current tolerance is $10 \mu \mathrm{~A} \leqq 11 \mathrm{Vdc}$
$\begin{gathered} \text { MI7 } \\ \underset{\text { MI8 }}{2} \end{gathered}$	Multi-function input 7~8	It can be a multi input option for Pr02-01 ~02-08. It can also be used as a PG function. For more information on PG function, see page 6-5.
RA1	Multi-function relay output 1 (N.O.) a	Resistive Load: 5A(N.O.)/3A(N.C.) 250VAC
RB1	Multi-function relay output 1 (N.C.) b	5A(N.O.)/3A(N.C.) 30VDC Inductive Load (COS 0.4):
RC1	Multi-function relay common 1	2.0A(N.O.)/1.2A(N.C.) 250 VAC
RA2	Multi-function relay output 2 (N.O.) a	2.0A(N.O.)/1.2A(N.C.) 30VDC It is used to output each monitor signal, such as drive
RC2	Multi-function relay common 2	is in operation, frequency attained or overload indication.
DFM1	Digital frequency meter 1 (when Pr.02-21=0, DFM1 is the setting of Pr.02-16) (When Pr.02-21 $\geqq 1$, DM1 is the pulse output.)	The AC motor drive releases various monitor signals, such as drive in operation, frequency attained and overload indication, via transistor (open collector). Regard the pulse voltage as the output monitor signal Duty-cycle: 50\%
DFM2	Digital frequency meter 2 (When Pr.02-55 $=0$, DFM2 is the setting value of Pr.02-17.) (When Pr.02-55 $\geqq 1$, DFM2 is the pulse output)	Min. load impedance: $1 \mathrm{k} \Omega / 100 \mathrm{pf}$ Max. current: 30 mA Max. voltage: 30 Vdc DFM1 Multi-function outpu frequency terminals
DCM	Digital frequency signal common	\rightarrow. \rightarrow dFM2
SG+	Modbus RS-485 $8 \longleftarrow 1$	PIN4 • PIN5 equals to the PIN4, PIN5 of the RJ45 internet cable connector.
SG-	[ececele	PIN 3: GND PIN 4: SG- PIN 5: SG+

Terminals	Terminal Function	Factory Setting (NPN mode)
+10V	Potentiometer power supply	Analog frequency setting: +10Vdc 20 mA
AVI	Analog voltage input	Impedance: $20 \mathrm{k} \Omega$ Range: 0~10V/0~20mA/ 4~20mA(Pr.03-38) $=0 \sim$ Max. Output Frequency (Pr.01-00) AVI switch, factory setting is $0 \sim 10 \mathrm{~V}$
ACI	Analog current input	Impedance: 500Ω Range: 4~20mA/0~10V/0~20mA(Pr.03-39) $=0 \sim$ Max. Output Frequency (Pr.01-00) ACI Switch, factory setting is $4 \sim 20 \mathrm{~mA}$
AUI	Auxiliary analog voltage input internal circuit	Impedance: $20 \mathrm{k} \Omega$ Range: -10~+10VDC=0 ~ Max. Output Frequency(Pr.01-00)
AFM1		Impedance: 100k Ω (voltage output) Output current: 2 mA max Resolution: 0~10V corresponds to Max. operation frequency Range: 0~10V
AFM2	$\underbrace{A F M 2}_{\ominus=0}$	Impedance: 100Ω (current output) Output current: 20mA max Resolution: $0 \sim 20 \mathrm{~mA}$ corresponds to Max. operation frequency Range: $0 \sim 20 \mathrm{~mA}, 4 \sim 20 \mathrm{~mA}$
ACM	Analog Signal Common	Common for analog terminals

NOTE: Wire size of analog control signals: 18 AWG ($0.75 \mathrm{~mm}^{2}$) with shielded wire

Analog input terminals (AVI, ACI, AUI, ACM)

\square Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (<20m) with proper grounding. If the noise is inductive, connecting the shield to terminal ACM can bring improvement.

च If the analog input signals are affected by noise from the AC motor drive, please connect a capacitor and ferrite core as indicated in the following diagram.

Wind each wires 3 times or more around the core

Digital inputs (FWD, REV, MI1~MI8, COM)

చ When using contacts or switches to control the digital inputs, please use high quality components to avoid contact bounce.

Transistor outputs (MO1, MO2, MCM)

\checkmark Make sure to connect the digital outputs to the right polarity.
\square When connecting a relay to the digital outputs, connect a surge absorber across the coil and check the polarity.

PG Function Explanation

1. When C 200 is running at speed mode, it uses external terminal MI7~MI8 as PG connection function terminal.
2. C200 uses encoder, open collector of only 24 Vdc . The maximum cable length of encoder is 30 m . For example: Delta's encoder (ES3-06CN6941).
3. For External terminal MI7~MI8, their the minimum working voltage is 21 Vdc , maximum input/output frequency is 33 kHz . Refer to the formula below:

Maximum output rotation speed (rpm) /60*PG $\leq 33.000 \mathrm{~Hz}$ Maximum output rotation speed (rpm) $=\left(120^{*}\right.$ frequency/motor pole number)

For example: Set up PG function to be 600pulse, pole number to be 4 and the maximum rotation frequency is 60 Hz .

The maximum rotation speed $(\mathrm{rpm})=(120 * 60) / 4=1800 \mathrm{rpm}$ $1800 / 60 * 600=18000 \mathrm{~Hz}$
4. Set up Pr10-01~ 10-04 before using PG function. Its wiring diagram is shown as below:

5. Since MI1~MI8 shares the same COM, therefore when using a PG card, MI~MI6 can only be applied at SINK MODE.

Chapter 7 Optional Accessories

The optional accessories listed in this chapter are available upon request. Installing additional accessories to your drive would substantially improves the drive's performance. Please select an applicable accessory according to your need or contact the local distributor for suggestion.

- All Brake Resistors and Brake Units Used in AC Motor Drives
- Non-fuse Circuit Breaker
- Fuse (Specification Chart)
- AC Reactor
- Zero Phase Reactor
- DC Reactor
- EMI Filter
- Digital Keypad
- Panel Mounting
- Fan Kit
- USB/RS-485 Communication Interface IFD6530
- MKCB-HUB01 Multi-function Communication Expansion Card

All Brake Resistors and Brake Units Used in AC Motor Drives

230V 1－phase

Applicable Motor	${ }^{* 1} 125 \%$ Braking Torque 10% ED				${ }^{* 2}$ Max．Brake Torque			
HP	kW	Braking Torque （kg－m）	${ }^{* 3}$ Braking Resistor series for each Brake Unit	Resistor value spec．for each AC motor Drive	Total Braking Current (A)	Min．Resistor Value（ $\Omega)$	Max．Total Braking Current（A）	Peak Power $(k W)$
0.5	0.4	0.27	BR080W200＊1	$80 W 200 \Omega$	1.9	63.3	6	2.3
1	0.75	0.51	BR080W200＊1	$80 W 200 \Omega$	1.9	63.3	6	2.3
2	1.5	1.0	BR200W091＊1	$200 W 91 \Omega$	4.2	47.5	8	3.0
3	2.2	1.5	BR300W070＊1	$300 W 70 \Omega$	5.4	38.0	10	3.8

230V 3－phase

App	able or	$*^{1} 125 \%$ Braking Torque 10% ED				＊2 Max．Brake Torque		
HP	kW	Braking Torque （kg－m）	${ }^{* 3}$ Braking Resistor series for each Brake Unit	Resistor value spec．for each AC motor Drive	Total Braking Current （A）	Min．Resistor Value（ Ω ）	Max．Total Braking Current（A）	Peak Power （kW）
0.5	0.4	0.27	BR080W200＊1	80W200ת	1.9	63.3	6	2.3
1	0.75	0.51	BR080W200＊1	80W200ת	1.9	63.3	6	2.3
2	1.5	1.0	BR200W091＊1	200W91』	4.2	47.5	8	3.0
3	2.2	1.5	BR300W070＊1	300W70』	5.4	38.0	10	3.8
5	3.7	2.5	BR400W040＊1	400W40ת	9.5	19.0	20	7.6

460V

$\begin{array}{r} \mathrm{App} \\ \mathrm{M} \end{array}$	cable tor	＊1 125% Braking Torque 10\％ED				＊2 Max．Brake Torque		
HP	kW	Braking Torque （kg－m）	${ }^{* 3}$ Braking Resistor series for each Brake Unit	Resistor value spec．for each AC motor Drive	Total Braking Current （A）	Min．Resistor Value（ Ω ）	Max．Total Braking Current（A）	Peak Power （kW）
1	0.75	0.5	BR080W750＊1	80W750』	1	190.0	4	3.0
2	1.5	1.0	BR200W360＊1	200W360ת	2.1	126.7	6	4.6
3	2.2	1.5	BR300W250＊1	300W250	3	108.6	7	5.3
5	3.7	2.5	BR400W150＊1	400W150	5.1	84.4	9	6.8
5.5	4.0	2.7	BR1K0W075＊1	1000W75	10.2	54.3	14	10.6
7.5	5.5	3.7	BR1K0W075＊1	1000W75	10.2	54.3	14	10.6
10	7.5	5.1	BR1K0W075＊1	1000W75	10.2	47.5	16	12.2

Calculation for 125% brake toque：（kw）＊ $125 \%{ }^{*} 0.8$ ；where 0.8 is motor efficiency．
Because there is a resistor limit of power consumption，the longest operation time for $10 \% \mathrm{ED}$ is 10 sec （on： $10 \mathrm{sec} /$ off： 90sec）．
＊2 Please refer to the Brake Performance Curve for＂Operation Duration \＆ED＂vs．＂Braking Current＂．
＊3 For heat dissipation，a resistor of 400W or lower should be fixed to the frame and maintain the surface temperature below $50^{\circ} \mathrm{C}$ ；a resistor of 1000 W and above should maintain the surface temperature below $350^{\circ} \mathrm{C}$ ．

\square NOTE

1．Definition for Brake Usage ED\％
Explanation：The definition of the brake usage ED（\％）is for assurance of enough time for the brake unit and brake resistor to dissipate away heat generated by braking．When the brake resistor heats up，the resistance would increase with temperature，and brake torque would decrease accordingly．Recommended cycle time is one minute．

For safety concern, install an overload relay (O.L) between the brake unit and the brake resistor in conjunction with the magnetic contactor (MC) prior to the drive for abnormal protection. The purpose of installing the thermal overload relay is to protect the brake resistor from damage due to frequent brake, or due to brake unit keeping operating resulted from unusual high input voltage. Under such circumstance, just turn off the power to prevent damaging the brake resistor.
2. If damage to the drive or other equipment is due to the fact that the brake resistors and brake modules in use are not provided by Delta, the warranty will be void.
3. Take into consideration the safety of the environment when installing the brake resistors. If the minimum resistance value is to be utilized, consult local dealers for the calculation of Watt figures.
4. This chart is for normal usage; if the AC motor drive is applied for frequent braking, it is suggested to enlarge $2 \sim 3$ times of the Watts.
5. Thermal Relay:

Thermal relay selection is basing on its overload capability. A standard braking capacity for C2000 is 10\%ED (Tripping time=10s). The figure below is an example of $406 \mathrm{~V}, 110 \mathrm{kw}$ AC motor drive. It requires the thermal relay to take 260% overload capacity in 10s (Host starting) and the braking current is 126A. In this case, user should select a rated 50A thermal relay. The property of each thermal relay may vary among different manufacturer, please carefully read specification.

Non-fuse Circuit Breaker

Comply with UL standard: Per UL 508, paragraph 45.8.4, part a,
The rated current of the breaker shall be 2~4 times of the maximum rated input current of $A C$ motor drive.

1-phase 230V	
Model	Recommended non-fuse breaker (A)
VFD004CB21A-20/-21/-21M	15
VFD007CB21A-20/-21/-21M	20
VFD015CB21A-20/-21/-21M	30
VFD022CB21A-20/-21/-21M	50

3-phase 230V	
Model	Recommended non-fuse breaker (A)
VFD004CB23A-20/-21/-21M	10
VFD007CB23A-20/-21/-21M	15
VFD015CB23A-20/-21/-21M	20
VFD022CB23A-20/-21/-21M	30
VFD037CB23A-20/-21/-21M	40

3-phase 460V	
	Recommended non-fuse breaker (A)
VFD007CB43A-20/-21/-21M	10
VFD015CB43A-20/-21/-21M	10
VFD022CB43A-20/-21/-21M	15
VFD037CB43A-20/-21/-21M	20
VFD040CB43A-20/-21/-21M	20
VFD055CB43A-20/-21/-21M	30
VFD075CB43A-20/-21/-21M	40

Fuse Specification Chart

- Use only the fuses comply with UL certificated.
- Use only the fuses comply with local regulations.

Model	Manufacturer	Class / Catalog No	Rating
VFD004CB21A-20/-21/-21M	Cooper Bussmann Inc.	Class _T / JJN-15	$300 \mathrm{Vac}, 15 \mathrm{~A}$
VFD007CB21A-20/-21/-21M		Class _T / JJN-20	$300 \mathrm{Vac}, 20 \mathrm{~A}$
VFD015CB21A-20/-21/-21M		Class_T / JJN-30	$300 \mathrm{Vac}, 30 \mathrm{~A}$
VFD022CB21A-20/-21/-21M		Class_T / JJN-50	$300 \mathrm{Vac}, 50 \mathrm{~A}$
VFD004CB23A-20/-21/-21M		Class_T/ JJN-10	$300 \mathrm{Vac}, 10 \mathrm{~A}$
VFD007CB23A-20/-21/-21M		Class_T / JJN-15	$300 \mathrm{Vac}, 15 \mathrm{~A}$
VFD015CB23A-20/-21/-21M		Class_T / JJN-20	$300 \mathrm{Vac}, 20 \mathrm{~A}$
VFD022CB23A-20/-21/-21M		Class_T / JJN-30	$300 \mathrm{Vac}, 30 \mathrm{~A}$
VFD037CB23A-20/-21/-21M		Class _T / JJN-40	$300 \mathrm{Vac}, 40 \mathrm{~A}$
VFD007CB43A-20/-21/-21M		Class_T / JJS-10	$600 \mathrm{Vac}, 10 \mathrm{~A}$
VFD015CB43A-20/-21/-21M		Class _T / JJS-10	$600 \mathrm{Vac}, 10 \mathrm{~A}$
VFD022CB43A-20/-21/-21M		Class_T / JJS-15	$600 \mathrm{Vac}, 15 \mathrm{~A}$
VFD037CB43A-20/-21/-21M		Class _T / JJS-20	$600 \mathrm{Vac}, 2 \mathrm{~A}$
VFD040CB43A-20/-21/-21M		Class _T / JJS-20	$600 \mathrm{Vac}, 2 \mathrm{~A}$
VFD055CB43A-20/-21/-21M		Class_T / JJS-30	$600 \mathrm{Vac}, 30 \mathrm{~A}$
VFD075CB43A-20/-21/-21M		Class _T / JJS-40	$600 \mathrm{Vac}, 40 \mathrm{~A}$

AC Reactor

When the AC Motor Drive is connected directly to a large-capacity power transformer (600kVA or above) or when a phase lead capacitor is switched, excess peak currents may occur in the power input circuit due to the load changes and the converter section may be damaged. To avoid this, it is recommend to use a serial connected AC input reactor(6\%) at the AC Motor Drive mains input side to reduce the current and improve the input power efficiency.
230V, 50/60Hz, 1-phase

kW	HP	Rated Amps of AC Reactor	Max. continuous Amps	Inductance (mh) $3 \sim 5 \%$ impedance
0.37	0.5	5	7.5	3
0.75	1	8	12	1.5
1.5	2	12	18	1.25
2.2	3	18	27	0.8

$230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$, 3-phase

kW	HP	Rated Amps of AC Reactor	Max. continuous Amps	Inductance (mh) 3~5\% impedance	
				3\% impedance	5\% impedance
0.37	0.5	4	6	6.5	9
0.75	1	8	12	3	5
1.5	2	8	12	1.5	3
2.2	3	12	18	1.25	2.5
3.7	5	18	27	0.8	1.5

$460 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 3$-phase

kW	HP	Rated Amps of AC Reactor	Max. continuous Amps	Inductance (mh) 3~5\% impedance	
				3\% impedance	5\% impedance
0.75	1	4	6	9	12
1.5	2	4	6	6.5	9
2.2	3	8	12	5	7.5
3.7	5	12	18	2.5	4.2
4	5	12	18	2.5	4.2
5.5	7.5	18	27	1.5	2.5
7.5	10	18	27	1.5	2.5

Applications for AC Reactor

Connected in input circuit

Application 1

When more than one AC motor drive is connected to the same mains power, and one of them is ON during operation.

Problem: When applying power to one of the AC motor drive, the charge current of the capacitors may cause voltage dip. The AC motor drive may be damaged when over current occurs during operation.

Correct wiring:

Application 2

Silicon rectifier and AC motor drive are connected to the same power.
Problem: Switching spikes will be generated when the silicon rectifier switches ON/OFF.
These spikes may damage the mains circuit.
Correct wiring:

Application 3

When the power supply capacity exceeds 10 times of the inverter capacity.
Problem: When the mains power capacity is too large, line impedance will be small and the charge current will be too high. This may damage AC motor drive due to higher rectifier temperature.
Correct wiring

DC Reactor

460V DC Choke

Input Voltage	kW	HP	DC Amps	Inductance (mh)
460Vac $50 / 60 \mathrm{~Hz}$	4	5.5	23	2.7
3-Phase	5.5	7.5	25	2.47
	7.5	10	30	2.1

Zero Phase Reactors

RF220X00A

Cable type (Note)	Recommended Wire Size (mm^{2})			Qty.	Wiring Method
	AWG	mm^{2}	Nominal (mm^{2})		
Singlecore	≤ 10	≤ 5.3	≤ 5.5	1	$\underset{\mathrm{A}}{\text { Diagram }}$
	≤ 2	≤ 33.6	≤ 38	4	$\underset{B}{\text { Diagram }}$
Threecore	≤ 12	≤ 3.3	≤ 3.5	1	$\underset{\mathrm{A}}{\text { Diagram }}$
	≤ 1	≤ 42.4	≤ 50	4	$\underset{B}{\text { Diagram }}$

NOTE

600 V insulated cable wire

1. The table above gives approximate wire size for the zero phase reactors but the selection is ultimately governed by the type and the diameter of the cable, i.e. the cable diameter must small enough to go through the center of the zero phase reactor.
2. When wiring, do not goes through the earth core. It only needs to pass through the motor cable or the power cable.
3. When a long motor cable for output is used, a zero phase reactor may be necessary to reduce the radiated emission.

UNIT: mm (inch)

Diagram A
Wind each wire around the core for 4 times. The reactor must be placed at the AC motor drive output side as close as possible.

Diagram B
Put the wires/cables through the middle of the 4 cores that lines in parallel.

EMI Filter

Model	Applicable EMI Filter	Reference Website
VFD004CB21A-20/-21/-21M; VFD007CB21A-20/-21/-21M; VFD015CB21A-20/-21/-21M; VFD022CB21A-20/-21/-21M;	MDF25	http://www.dem-uk.com/roxburgh/products/industrial emc filters/single ph ase industrial motor inverter servo drive filters/ MDF25 Single Phase Industrial Motor Drive Filters - High Performance 25 Amps
VFD004CB23A-20/-21/-21M; VFD007CB23A-20/-21/-21M; VFD015CB23A-20/-21/-21M;	KMF318A	http://www.dem-uk.com/roxburgh/products/industrial emc filters/three pha se industrial mains filters high performance/ KMF318 Three Phase Industrial Mains Filters - General Purpose 18 Amps
VFD022CB23A-20/-21/-21M; VFD037CB23A-20/-21/-21M;	KMF325A	http://www.dem-uk.com/roxburgh/products/industrial emc filters/three pha se industrial mains filters high performance/ KMF325A Three Phase Industrial Mains Filters - High Performance 25 Amps
VFD007CB43A-20/-21/-21M; VFD015CB43A-20/-21/-21M;	FN 3258-7-45	http://www.schaffner.com/en/products/emcemi.html FN 3258 Ultra-compact EMC/EMI Filter for three-phase systems and motor drives
VFD022CB43A-20/-21/-21M; VFD037CB43A-20/-21/-21M;	FN 3258-16-45	http://www.schaffner.com/en/products/emcemi.html FN 3258 Ultra-compact EMC/EMI Filter for three-phase systems and motor drives
VFD040CB43A-20/-21/-21M; VFD055CB43A-20/-21/-21M; VFD075CB43A-20/-21/-21M;	FN 3258-30-47	http://www.schaffner.com/en/products/emcemi.html FN 3258 Ultra-compact EMC/EMI Filter for three-phase systems and motor drives

EMI Filter Installation

All electrical equipment, including AC motor drives, will generate high-frequency/low-frequency noise and will interfere with peripheral equipment by radiation or conduction when in operation. By using an EMI filter with correct installation, much interference can be eliminated. It is recommended to use DELTA EMI filter to have the best interference elimination performance.
We assure that it can comply with following rules when AC motor drive and EMI filter are installed and wired according to user manual:

. EN61000-6-4

- EN61800-3: 1996
- EN55011 (1991) Class A Group 1 (1 ${ }^{\text {st }}$ Environment, restricted distribution)

General precaution

1. EMI filter and AC motor drive should be installed on the same metal plate.
2. Please install AC motor drive on footprint EMI filter or install EMI filter as close as possible to the AC motor drive.
3. Please wire as short as possible.
4. Metal plate should be grounded.
5. The cover of EMI filter and AC motor drive or grounding should be fixed on the metal plate and the contact area should be as large as possible.

Choose suitable motor cable and precautions

Improper installation and choice of motor cable will affect the performance of EMI filter. Be sure to observe the following precautions when selecting motor cable.

1. Use the cable with shielding (double shielding is the best).
2. The shielding on both ends of the motor cable should be grounded with the minimum length and maximum contact area.
3. Remove any paint on metal saddle for good ground contact with the plate and shielding.

Remove any paint on metal saddle for good ground contact with the plate and shielding.

Figure 1

Figure 2

The length of motor cable

When motor is driven by an AC motor drive of PWM type, the motor terminals will experience surge voltages easily due to components conversion of AC motor drive and cable capacitance. When the motor cable is very long (especially for the 460 V series), surge voltages may reduce insulation quality. To prevent this situation, please follow the rules below:

- Use a motor with enhanced insulation.

■ Connect an output reactor (optional) to the output terminals of the AC motor drive
■ The length of the cable between AC motor drive and motor should be as short as possible (10 to 20 m or less)
■ For models 7.5 hp and above:

Insulation level of motor	1000 V	1300 V	1600 V
460 VAC input voltage	$66 \mathrm{ft}(20 \mathrm{~m})$	$328 \mathrm{ft}(100 \mathrm{~m})$	$1312 \mathrm{ft}(400 \mathrm{~m})$
230 VAC input voltage	$1312 \mathrm{ft}(400 \mathrm{~m})$	$1312 \mathrm{ft}(400 \mathrm{~m})$	$1312 \mathrm{ft}(400 \mathrm{~m})$

■ For models 5hp and less:

Insulation level of motor	1000 V	1300 V	1600 V
460VAC input voltage	$66 \mathrm{ft}(20 \mathrm{~m})$	$165 \mathrm{ft}(50 \mathrm{~m})$	$165 \mathrm{ft}(50 \mathrm{~m})$
230 VAC input voltage	$328 \mathrm{ft}(100 \mathrm{~m})$	$328 \mathrm{ft}(100 \mathrm{~m})$	$328 \mathrm{ft}(100 \mathrm{~m})$

Never connect phase lead capacitors or surge absorbers to the output terminals of the AC motor drive.

- If the length is too long, the stray capacitance between cables will increase and may cause leakage current. It will activate the protection of over current, increase leakage current or not insure the correction of current display. The worst case is that AC motor drive may damage.
\square If more than one motor is connected to the AC motor drive, the total wiring length is the sum of the wiring length from $A C$ motor drive to each motor.
- For the 460 V series AC motor drive, when an overload relay is installed between the drive and the motor to protect motor over heating, the connecting cable must be shorter than 50 m . However, an overload relay malfunction may still occur. To prevent the malfunction, install an output reactor (optional) to the drive or lower the carrier frequency setting (Pr.00-17).

NOTE

When a thermal O / L relay protected by motor is used between $A C$ motor drive and motor, it may malfunction (especially for 460 V series), even if the length of motor cable is only $165 \mathrm{ft}(50 \mathrm{~m})$ or less. To prevent it, please use AC reactor and/or lower the carrier frequency (Pr. 00-17 PWM carrier frequency).

Digital Keypad

KPC-CC01

KPC-CE01

Communication Interface
RJ-45 (socket) , RS-485 interface;
Installation Method
Embedded type and can be put flat on the surface of the control box. The front cover is water proof.

Descriptions of Keypad Functions

Key	Descriptions
RUN	Start Operation Key 1. It is only valid when the source of operation command is from the keypad. 2. It can operate the AC motor drive by the function setting and the RUN LED will be ON. 3. It can be pressed again and again at stop process. 4. When enabling "HAND" mode, it is only valid when the source of operation command is from the keypad.
STOP	Stop Command Key. This key has the highest processing priority in any situation. 1. When it receives STOP command, no matter the AC motor drive is in operation or stop status, the AC motor drive needs to execute "STOP" command. 2. The RESET key can be used to reset the drive after the fault occurs. For those faults that can't be reset by the RESET key, see the fault records after pressing MENU key for details.
	Operation Direction Key 1. This key is only control the operation direction NOT for activate the drive. FWD: forward, REV: reverse. 2. Refer to the LED descriptions for more details.
ENTER	ENTER Key Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command.
ESC	ESC Key ESC key function is to leave current menu and return to the last menu. It is also functioned as a return key in the sub-menu.
MENU	Press menu to return to main menu. Menu content: KPC-CE01 does not support function $5 \sim 13$. 1. Detail Parameter 7. Quick/Simple Setup 13. PC Link 2. Copy Parameter 8. Display Setup 3. Keypad Locked 9. Time Setup 4. PLC Function 10. Language Setup 5. Copy PLC 11. Startup Menu 6. Fault Record 12. Main Page
	Direction: Left/Right/Up/Down 1. In the numeric value setting mode, it is used to move the cursor and change the numeric value. 2. In the menu/text selection mode, it is used for item selection.

Descriptions of LED Functions

LED	Descriptions
RUN	Steady ON: operation indicator of the AC motor drive, including DC brake, zero speed, standby, restart after fault and speed search. Blinking: drive is decelerating to stop or in the status of base block. Steady OFF: drive doesn't execute the operation command
$\begin{gathered} \text { STOP } \\ \text { RESET } \end{gathered}$	Steady ON: stop indicator of the AC motor drive. Blinking: drive is in the standby status. Steady OFF: drive doesn't execute "STOP" command.
	Operation Direction LED 1. Green light is on, the drive is running forward. 2. Red light is on, the drive is running backward. 3. Twinkling light: the drive is changing direction.
HAND	(Only KPC-CE01 support this function) Setting can be done during operation. HAND LED: When HAND LED is on (HAND mode); when HAND LED is off (AUTO mode).
AUTO	(Only KPC-CE01Support this function) Setting can be done during operation. AUTO LED: when AUTO LED is on (AUTO mode); when AUTO LED is off (HAND mode).

Dimension

Panel Mounting (MKC-KPPK)

For MKC-KPPK model, user can choose wall mounting or embedded mounting, protection level is IP56.
Applicable to the digital keypads (KPC-CC01 \& KPC-CE01).

RJ45 Extension Lead for Digital Keypad

(Designed only for KEYPAD, NOT for CANopen communication)

Part \#	Description
CBC-K3FT	3 feet RJ45 extension lead (approximately 0.9 m)
CBC-K5FT	5 feet RJ45 extension lead (approximately 1.5 m)
CBC-K7FT	7 feet RJ45 extension lead (approximately 2.1 m)
CBC-K10FT	10 feet RJ45 extension lead (approximately 3 m)
CBC-K16FT	16 feet RJ45 extension lead (approximately 4.9 m)

Fan Kit

- Frames of the fan kit

Model『MKCB-AFKM1』This fan is a12Vdc ON/OFF control fan.
Applicable Model
VFD015CB21A-20/-21/-21M; VFD022CB21A-20/-21/-21M; VFD022CB23A-20/-21/-21M; VFD037CB23A-20/-21/-21M; VFD022CB43A-20/-21/-21M; VFD037CB43A-20/-21/-21M; VFD040CB43A-20/-21/-21M; VFD055CB43A-20/-21/-21M;

Fan Removal

Frame A0
Applicable model
VFD015CB21A-20/-21/-21M; VFD022CB21A-20/-21/-21M; VFD022CB23A-20/-21/-21M; VFD037CB23A-20/-21/-21M; VFD022CB43A-20/-21/-21M; VFD037CB43A-20/-21/-21M;

1. Press the tabs on both side of the fan to successfully remove the fan. (The arrow)

2. Disconnect the power terminal before removing the fan. (As shown below.)

Frame A0
Applicable model
VFD015CB23A－20／－21／－21M；
1）Disconnect the power terminal before removing the fan．（As shown below．）
2）Loosen the two screws to remove the fan．

Frame A

Applicable model
VFD040CB43A－20／－21／－21M；VFD055CB43A－20／－21／－21M；VFD075CB43A－20／－21／－21M

1．Press the tabs on both side of the fan to successfully remove the fan．（The arrow）

2．Disconnect the power terminal before removing the fan．（As shown below．）

※ 1 VFD040CB43A－20／－21／－21M；VFD055CB43A－20／－21／－21M：optional fan model\＃『MKCB－AFKM1』．
This fan is a 12 Vdc ON／OFF control fan．
※ 2 VFD075CB43A－20／－21／－21M：optional fan model \＃『MKCB－AFKM2』．
This fan is a 12 Vdc PWM control fan．

USB/RS-485 Communication Interface IFD6530

4
 Warning

\checkmark Please thoroughly read this instruction sheet before installation and putting it into use.
\checkmark The content of this instruction sheet and the driver file may be revised without prior notice. Please consult our distributors or download the most updated instruction/driver version at http://www.delta.com.tw/product/em/control/cm/control_cm_main.asp

1. Introduction

IFD6530 is a convenient RS-485-to-USB converter, which does not require external power-supply and complex setting process. It supports baud rate from 75 to 115.2 kbps and auto switching direction of data transmission. In addition, it adopts RJ-45 in RS-485 connector for users to wire conveniently. And its tiny dimension, handy use of plug-and-play and hot-swap provide more conveniences for connecting all DELTA IABU products to your PC.

Applicable Models: All DELTA IABU products.
(Application \& Dimension)

2. Specifications

Power supply	No external power is needed
Power consumption	1.5 W
Isolated voltage	$2,500 \mathrm{VDC}$
Baud rate	$75,150,300,600,1,200,2,400,4,800,9,600,19,200,38,400,57,600,115,200 \mathrm{bps}$
RS-485 connector	RJ-45
USB connector	A type (plug)
Compatibility	Full compliance with USB V2.0 specification
Max. cable length	RS-485 Communication Port: 100 m
Support RS-485 half-duplex transmission	

- RJ-45

$\xrightarrow{\square}$	$8 \leftarrow 1$	PIN	Description	PIN	Description
		1	Reserved	5	SG+
	ccemel	2	Reserved	6	GND
		3	GND	7	Reserved
		4	SG-	8	+9V

MKCB-HUB01 Multi-Function Communication Expansion Card

In order to coordinate with the integrity of parallel communication between RS485 and CANopen, Delta has introduced a multi-function communication expansion card.

Via RS-232 communication port of a computer, connect RS232/RS485 communication interface to any terminal of a communication board MKCB-HUB01. Then connect parallely to one or more VFDs to di multi-function communication control.

MODBUS RS-485\&CANopen Application

MODBUS RS-485
When using MODBUS RS-485, set the terminal resistor's PIN short of the last VFD at 120Ω. And the terminal resistor's PIN short of the rest of VFD need to be set at OPEN.

CANopen
When using CANopen, connect the MKCB-HUB1 of the last VFD to a terminal resistor.

C200 RJ-45 PIN definition

PIN	Signal	Note
1	CAN_H	CAN_H bus line (dominant high)
2	CAN_L	CAN_L bus line (dominant low)
3	CAN_GND	Ground /OVN/-
4	SG-	
5	SG+	
6	NC	
7	CAN_GND	Ground /OV/V-
8	EV	

Terminal resistor

PIN	Note
$1 \sim 2$	$120 \Omega 1 / 4 \mathrm{~W}$
$3 \sim 8$	NC

CANopen communication cable
Model \#: TAP-CB03, TAP-CB04

Title	Part No.	L	
1	TAP-CB03	500 ± 10	19 ± 0.4
2	TAP-CB04	1000 ± 10	39 ± 0.4

Dimensions

Unit: mm [inch]

Chapter 08 Specification

230V Series -1 Phase

Frame Size	A0			
Model VFD - _ _CB21A ${ }_{\text {- }}$ _ - ${ }^{\text {¹ }}$	004	007	015	022
Applicable Motor Output (kW)	0.4	0.75	1.5	2.2
Applicable Motor Output (HP)	0.5	1	2	3
Rated Output Capacity (kVA)	1.2	2.0	3.2	4.4
- Rated Output Current (A)	3	5	8	11
	rated output current is 120% for 60 seconds; rated output current is 160% for 3 seconds			
. $\underbrace{}_{\overline{=}}$	600.00 Hz			
¢ ${ }_{\text {¢ }}$ Carrier Frequency (kHz)	2~15kHz (Factory Setting: 8 kHz)			
$\stackrel{\text { ² }}{ } \times$ Rated Output Capacity (kVA)	1.1	1.9	2.8	4.0
$\stackrel{\text { r }}{\stackrel{3}{*}} \succ$ Rated Output Current (A)	2.8	4.8	7.1	10
$\underset{\text { ® }}{\underset{\rightharpoonup}{\gtrless}} \stackrel{\text { Overload Tolerance }}{ }$	rated output current is 150% for 60 seconds; rated output current is 180% for 3 seconds			
Max. Output Frequency (Hz)	600.00 Hz			
Carrier Frequency (kHz)	2~15kHz (Factory Setting: 2 kHz)			
Input Current (A) Normal Duty	7.2	12	15.7	22
\pm O) Input Current (A) Heavy Duty	6.7	11.5	14	20
을 Rated Voltage/Frequency	AC 200V~240V (-15\% ~ +10\%), 50/60Hz, 1-Phase			
\simeq Operating Voltage Range	170~265Vac			
Frequency Tolerance	$47 \sim 63 \mathrm{~Hz}$			
Cooling method	Natural cooling		Fan cooling	
Braking Chopper	Built-in			

230V Series -3 Phase

Frame Size	A0				
Model VFD - _ CB23A-_ _ ${ }^{\text {¹ }}$	004	007	015	022	037
Applicable Motor Output (kW)	0.4	0.75	1.5	2.2	3.7
Applicable Motor Output (HP)	0.5	1	2	3	5
Rated Output Capacity (kVA)	1.2	2.0	3.2	4.4	6.8
$\stackrel{\text { ¢ }}{4}$ Rated Output Current (A)	3	5	8	11	17
웅	rated output current is 120% for 60 seconds; rated output current is 160% for 3 seconds				
. ${ }_{\text {c }}$	600.00 Hz				
¢ Carrier Frequency (kHz)	2~15kHz (Factory Setting: 8 kHz)				
$\stackrel{\rightharpoonup}{3} \quad$ Rated Output Capacity (kVA)	1.1	1.9	2.8	4.0	6.4
	2.8	4.8	7.1	10	16
肴 Overload Tolerance	rated output current is 150% for 60 seconds; rated output current is 180% for 3 seconds				
\pm Max. Output Frequency (Hz)	600.00 Hz				
Carrier Frequency (kHz)	2~15kHz (Factory Setting: 2 kHz)				
Input Current (A) Normal Duty	3.9	6.4	12	16	20
- OInput Current (A) Heavy Duty	3.6	6.1	11	15	18.5
읃 Rated Voltage/Frequency	AC 200V 240 V (-15\% ~ +10\%), 50/60Hz 3-Phase				
\simeq Operating Voltage Range	170~265Vac				
Frequency Tolerance	$47 \sim 63 \mathrm{~Hz}$				
Cooling method	Natural cooling		Fan cooling		
Braking Chopper	Built-in				

460V Series

Frame Size	A0				A		
Model VFD－＿＿CB43A－	007	015	022	037	040	055	075
Applicable Motor Output（kW）	0.75	1.5	2.2	3.7	4.0	5.5	7.5
Applicable Motor Output（HP）	1	2	3	5	5.5	7.5	10
Rated Output Capacity（kVA）	2.4	3.2	4.8	7.2	8.4	10	14
¢	3.0	4.0	6.0	9.0	10.5	12	18
웅 Overload Tolerance	rated output current is 120% for 60 seconds； rated output current is 160% for 3 seconds						
	600.00 Hz						
¢ Carrier Frequency（kHz）	2～15kHz（Factory Setting： 8 kHz ）						
\pm Rated Output Capacity（kVA）	2.3	3.0	4.5	6.5	7.6	9.6	14
$\stackrel{\text { \％}}{\frac{1}{3}}$ ¢ Rated Output Current（A）	2.9	3.8	5.7	8.1	9.5	11	17
	rated output current is 150% for 60 seconds； rated output current is 180% for 3 seconds						
I Max．Output Frequency（Hz）	600.00 Hz						
Carrier Frequency（kHz）	2～15kHz（Factory Setting： 2 kHz ）						
Input Current（A）Normal Duty	4.3	5.9	8.7	14	15.5	17	20
～O Input Current（A）Heavy Duty	4.1	5.6	8.3	13	14.5	16	19
을 Rated Voltage／Frequency	AC 380V 480 V （－15\％～＋10\％），50／60Hz 3－Phase						
\simeq Operating Voltage Range	$323 \sim 528 \mathrm{Vac}$						
Frequency Tolerance	$47 \sim 63 \mathrm{~Hz}$						
Cooling method	Natural cooling		Fan cooling				
Braking Chopper	Built－in						

General Specifications

	Control Method	1：V／F，2：SVC，3：VF＋PG，4：FOC＋PG，
	Starting Torque	Reach up to 150% or above at 0.5 Hz ． Under FOC＋PG mode，starting torque can reach 150% at 0 Hz ．
	Speed Response Ability	5 Hz （vector control can reach up to 40Hz）
	Torque Limit	Max．200\％torque current
	Torque Accuracy	$\pm 5 \%$
	Max．Output Frequency（Hz）	normal duty：0．00～600．00Hz；Heavy duty： $0.00 \sim 600.00 \mathrm{~Hz}$
	Frequency Output Accuracy	Digital command： $\pm 0.01 \%,-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$ ，Analog command： $\pm 0.1 \%, 25 \pm 10^{\circ} \mathrm{C}$
	Output Frequency Resolution	Digital command： 0.01 Hz ，Analog command： 0.03 X max．output frequency／ 60 Hz （ $\pm 11 \mathrm{bit}$ ）
	Frequency Setting Signal	＋10V～－10，0～＋10V，4～20mA，0－20mA
	Accel．／decel．Time	$0.00 \sim 600.00$ seconds or 0．0～6000．0 seconds
	Main control function	Torque control，Droop control，Speed／torque control switching，Feed forward control，Zero－servo control，Momentary power loss ride thru，Speed search， Over－torque detection，Torque limit， 16 －step speed（max），Accel／decel time switch，S－curve accel／decel，3－wire sequence，Auto－Tuning（rotational， stationary），Dwell，Cooling fan on／off switch，Slip compensation，Torque compensation，JOG frequency，Frequency upper／lower limit settings，DC injection braking at start／stop，High slip braking，PID control（with sleep function），Energy saving control，MODOBUS communication（RS－485 RJ45， max． 115.2 kbps），Fault restart，Parameter copy
	Fan Control	User Pr07－19 to control cooling fans．
	Motor Protection	Electronic thermal relay protection
	Over－current Protection	For drive model 230 V and 460 V Over－current protection for 240% rated current current clamp『Normal duty：170～175\％』；『Heavy duty：180～185\％』
	Over－voltage Protection	230：drive will stop when DC－BUS voltage exceeds 410 V 460：drive will stop when DC－BUS voltage exceeds 820 V
	Over－temperature Protection	Built－in temperature sensor
	Stall Prevention	Stall prevention during acceleration，deceleration and running independently
	Grounding Leakage Current Protection	Leakage current is higher than 50\％of rated current of the AC motor drive
	Certifications	（ $\mathcal{\circ}$ © us GB／T12668－2

Environment for Operation, Storage and Transportation

DO NOT expose the AC motor drive in the bad environment, such as dust, direct sunlight, corrosive/inflammable gasses, humidity, liquid and vibration environment. The salt in the air must be less than $0.01 \mathrm{mg} / \mathrm{cm}^{2}$ every year.

Specification for Operation Temperature and Protection Level

Model	Frame	Top cover	Conduit Box
VFDxxxCBxxA-20	Frame A0~A	230V: 0.4~3.7kW	IP20 / UL Open Type

*2: The model names end by "-21M" are models which have strengthen cover cases. When the temperture is between $-10 \sim 35^{\circ} \mathrm{C}$, the rated current remains at 100%, but if the temperature increases to $36^{\circ} \mathrm{C}$, the rated current will start to decrease by 2% as the temperature increases by $1^{\circ} \mathrm{C}$.

Chapter 9 Digital Keypad

Description of the Digital Keypad KPE-LE02

Display Message	Descriptions
	Displays the AC drive Master Frequency.
${ }_{\substack{\text { reve } \\ \text { Rev } \\ \text { ond }}}$	Displays the actual output frequency at terminals $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2$, and $\mathrm{W} / \mathrm{T} 3$.
	User defined unit (where U = F x Pr.00.05)
	Displays the output current at terminals U/T1, V/T2, and W/T3.
	Displays the AC motor drive forward run status.
	Displays the AC motor drive reverse run status.
	The counter value (C).
	Displays the selected parameter.
	Displays the actual stored value of the selected parameter.

	$\sum^{\rho} \beta^{\text {s. зтор }}$	External Fault.
$\begin{aligned} & \text { RUNo } \\ & \text { fwD } \\ & \text { REV } \end{aligned}$	$E \pi i^{\text {stop }}$	Display "End" for approximately 1 second if input has been accepted by pressing ENTER key. After a parameter value has been set, the new value is automatically stored in memory. To modify an entry, use the \square and \square keys.
	$f^{E} p^{\cdot \text { sтор }}$	Display "Err", if the input is invalid.

NOTE

When the setting exceeds 99.99 for those numbers with 2 decimals (i.e. unit is 0.01), it will only display 1 decimal due to 4-digital display.

How to Operate the Digital Keypad

Setting parameters

To shift data

START

Setting direction (When operation source is digital keypad)

Setting PLC Mode

Reference Table for the 7-segment LED Display of the Digital Keypad

Number	0	1	2	3	4	5	6	7	8	9
Seven Segment Display	11 1.1 1	!	E	$\underline{9}$	4	5	$\stackrel{5}{6}$	7	\%	$\underline{10}$
English letter	A	a	B	C	c	D	d	E	e	F
Seven Segment Display	9	-	-	$\begin{aligned} & 1 \\ & i \\ & i \end{aligned}$	E	-	8	5	-	$\stackrel{\circ}{\circ}$
English letter	f	G	g	H	h	1	i	J	j	K
Seven Segment Display	-	$\begin{aligned} & 10 \\ & i-1 \end{aligned}$	-	\because	\therefore	!	E-	ní	-	10
English letter	k	L	1	M	m	N	n	0	0	P
Seven Segment Display	-	i	-	11	-	-	17	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	15	$\stackrel{\square}{10}$
English letter	p	Q	q	R	r	S	s	T	t	U
Seven Segment Display	-	-	9	-	5	5	-	7	E	111
English letter	u	V	v	W	w	X	x	Y	y	Z
Seven Segment Display	-	-	1.1	-	-	-	-	\cdots	-	=
English letter	z									
Seven Segment Display	-									

Keypad Dimensions

Dimensions are in millimeter [inch]

Chapter 10 Summary of Parameter Settings

This chapter provides summary of parameter settings for user to gather the parameter setting ranges, factory settings and set parameters. The parameters can be set, changed and reset by the digital keypad.

NOTE

1) N : the parameter can be set during operation
2) For more detail on parameters, please refer to Ch11 Description of Parameter Settings.

00 Drive Parameters

Chapter 10 Summary of Parameter Settings | C200 Series

	Parameter	Explanation	Settings	Factory Setting
N	00-31	Source of the Operation Command (HAND)	0: Digital keypad 1: External terminals. Keypad STOP disabled. 2: RS-485 serial communication. Keypad STOP disabled. 3: CANopen communication card	0
N	00-32	Digital Keypad STOP Function	0 : STOP key disable 1: STOP key enable	0
	$\begin{gathered} \text { 00-33 } \\ \sim \\ 00-47 \end{gathered}$	Reserved		
N	00-48	Display Filter Time (Current)	0.001~65.535 sec	0.100
N	00-49	Display Filter Time (Keypad)	$0.001 \sim 65.535 \mathrm{sec}$	0.100
	00-50	Software Version (date)	Read only	\#\#\#\#\#

01 Basic Parameters

	Parameter	Explanation	Settings	Factory Setting
	01-00	Max. Operation Frequency	0.00~600.00Hz	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
	01-01	Output Frequency of Motor 1	0.00~600.00Hz	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
	01-02	Output Voltage of Motor 1	$\begin{aligned} & 230 \mathrm{~V}: 0.0 \mathrm{~V} \sim 255.0 \mathrm{~V} \\ & 460 \mathrm{~V}: 0.0 \mathrm{~V} \sim 510.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200.0 \\ & 400.0 \end{aligned}$
	01-03	Mid-point Frequency 1 of Motor 1	0.00~600.00Hz	3.00
N	01-04	Mid-point Voltage 1 of Motor 1	$\begin{aligned} & \text { 230V: } 0.0 \mathrm{~V} \sim 240.0 \mathrm{~V} \\ & 460 \mathrm{~V}: 0.0 \mathrm{~V} \sim 480.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 11.0 \\ & 22.0 \end{aligned}$
	01-05	Mid-point Frequency 2 of Motor 1	$0.00 \sim 600.00 \mathrm{~Hz}$	0.50
N	01-06	Mid-point Voltage 2 of Motor 1	$\begin{aligned} & 230 \mathrm{~V}: 0.0 \mathrm{~V} \sim 240.0 \mathrm{~V} \\ & 460 \mathrm{~V}: 0.0 \mathrm{~V} \sim 480.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$
	01-07	Min. Output Frequency of Motor 1	0.00~600.00Hz	0.00
N	01-08	Min. Output Voltage of Motor 1	$\begin{aligned} & 230 \mathrm{~V}: 0.0 \mathrm{~V} \sim 240.0 \mathrm{~V} \\ & 460 \mathrm{~V}: 0.0 \mathrm{~V} \sim 480.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$
	01-09	Start-Up Frequency	$0.00 \sim 600.00 \mathrm{~Hz}$	0.50
N	01-10	Output Frequency Upper Limit	$0.00 \sim 600.00 \mathrm{~Hz}$	600.00
N	01-11	Output Frequency Lower Limit	0.00~600.00Hz	0.00
N	01-12	Accel. Time 1	$\begin{aligned} & \text { Pr.01-45=0: 0.00~600.00 second } \\ & \text { Pr. } 01-45=1: 0.00 \sim 6000.0 \text { second } \end{aligned}$	$\begin{gathered} 10.00 \\ 10.0 \\ \hline \end{gathered}$
N	01-13	Decel Time 1	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00 \sim 600.00 \text { second } \\ & \text { Pr. } 01-45=1: 0.00 \sim 6000.0 \text { second } \end{aligned}$	$\begin{gathered} 10.00 \\ 10.0 \end{gathered}$
N	01-14	Accel Time 2	$\begin{aligned} & \text { Pr.01-45=0: 0.00~600.00 second } \\ & \text { Pr.01-45=1: } 0.00 \sim 6000.0 \text { second } \end{aligned}$	$\begin{gathered} 10.00 \\ 10.0 \end{gathered}$
N	01-15	Decel Time 2	$\begin{aligned} & \text { Pr.01-45=0: } 0.00 \sim 600.00 \text { second } \\ & \text { Pr.01-45=1: } 0.00 \sim 6000.0 \text { second } \end{aligned}$	$\begin{gathered} 10.00 \\ 10.0 \end{gathered}$
N	01-16	Accel Time 3	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00 \sim 600.00 \text { second } \\ & \text { Pr. } 01-45=1: 0.00 \sim 6000.0 \text { second } \end{aligned}$	$\begin{gathered} 10.00 \\ 10.0 \end{gathered}$
N	01-17	Decel Time 3	$\begin{aligned} & \text { Pr.01-45=0: } 0.00 \sim 600.00 \text { second } \\ & \text { Pr.01-45=1: } 0.00 \sim 6000.0 \text { second } \end{aligned}$	$\begin{gathered} 10.00 \\ 10.0 \end{gathered}$
N	01-18	Accel Time 4	$\begin{aligned} & \text { Pr. 01-45=0: } 0.00 \sim 600.00 \text { second } \\ & \text { Pr.01-45=1: } 0.00 \sim 6000.0 \text { second } \end{aligned}$	$\begin{gathered} 10.00 \\ 10.0 \end{gathered}$
N	01-19	Decel Time 4	$\begin{aligned} & \text { Pr. 01-45=0: } 0.00 \sim 600.00 \text { second } \\ & \text { Pr.01-45=1: } 0.00 \sim 6000.0 \text { second } \end{aligned}$	$\begin{gathered} 10.00 \\ 10.0 \end{gathered}$
N	01-20	JOG Acceleration Time	$\begin{aligned} & \text { Pr. 01-45=0: } 0.00 \sim 600.00 \text { second } \\ & \text { Pr.01-45=1: } 0.00 \sim 6000.0 \text { second } \end{aligned}$	$\begin{gathered} 10.00 \\ 10.0 \end{gathered}$
N	01-21	JOG Deceleration Time	Pr.01-45=0: 0.00~600.00 second Pr.01-45=1: 0.00~6000.0 second	$\begin{gathered} 10.00 \\ 10.0 \end{gathered}$
N	01-22	JOG Frequency	$0.00 \sim 600.00 \mathrm{~Hz}$	6.00
N	01-23	1st/4th Accel/decel Frequency	0.00~600.00Hz	0.00
N	01-24	S-curve Acceleration Begin Time 1	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00 \sim 25.00 \text { second } \\ & \text { Pr.01-45=1: } 0.0 \sim 250.0 \text { second } \end{aligned}$	$\begin{gathered} 0.20 \\ 0.2 \end{gathered}$
N	01-25	S-curve Acceleration Arrival Time 2	Pr.01-45=0: 0.00~25.00 second Pr.01-45=1: 0.0~250.0 second	$\begin{gathered} 0.20 \\ 0.2 \end{gathered}$
N	01-26	S-curve Deceleration Begin Time 1	$\begin{aligned} & \text { Pr.01-45=0: 0.00~25.00 second } \\ & \text { Pr.01-45=1: } 0.0 \sim 250.0 \text { second } \end{aligned}$	$\begin{gathered} 0.20 \\ 0.2 \end{gathered}$
N	01-27	S-curve Deceleration Arrival Time 2	$\begin{aligned} & \text { Pr.01-45=0: 0.00~25.00 second } \\ & \text { Pr.01-45=1: } 0.0 \sim 250.0 \text { second } \end{aligned}$	$\begin{gathered} 0.20 \\ 0.2 \end{gathered}$
	01-28	Skip Frequency 1 (upper limit)	0.00~600.00Hz	0.00
	01-29	Skip Frequency 1 (lower limit)	$0.00 \sim 600.00 \mathrm{~Hz}$	0.00

02 Digital Input/Output Parameters

Parameter	Explanation	Settings	Factory Setting
02-00	2-wire/3-wire Operation Control	0: 2-wire mode, power on for operation control 1: 2-wire mode 2, power on for operation control 2: 3-wire, power on for operation control	0
02-01	Multi-function Input Command 1 (MI1)	0: No function	1
02-02	Multi-function Input Command 2 (MI2)	1: Multi-step speed command $1 /$ multi-step position command 1	2
02-03	Multi-function Input Command 3 (MI3)	2: Multi-step speed command $2 /$ multi-step position command 2	3
02-04	Multi-function Input Command 4 (MI4)	3: Multi-step speed command 3/multi-step position command 3	4
02-05	Multi-function Input Command 5 (MI5)	4: Multi-step speed command 4/multi-step position command 4	0
02-06	Multi-function Input Command 6 (MI6)	5: Reset	0
02-07	Multi-function Input Command 7 (MI7)	6: JOG command (By KPC-CC01 or external control)	0
02-08	Multi-function Input Command 8 (MI8)	7: Acceleration/deceleration speed inhibit	0
		8: The $1^{\text {st }}, 2^{\text {nd }}$ acceleration/deceleration time selection	0
		9: The $3^{\text {rd }}, 4^{\text {th }}$ acceleration/deceleration time selection	0
		10: EF Input (Pr.07-20)	0
		11: B.B input from external (Base Block)	0
		12: Output stop	0
		13: Cancel the setting of optimal accel. /decel. time	0
		14: Switch between motor 1 and motor 2	
		15: Operation speed command from AVI	
		16: Operation speed command from ACI	
		17: Operation speed command from AUI	
		18: Emergency stop (Pr.07-20)	
		19: Digital up command	
		20: Digital down command	
		21: PID function disabled	
		22: Clear counter	
		23: Input the counter value (MI6)	
		24: FWD JOG command	
		25: REV JOG command	
		26: TQC/FOCmodel selection	
		27: ASR1/ASR2 selection	
		28: Emergency stop (EF1)	
		29: Signal confirmation for Y-connection	
		30: Signal confirmation for Δ-connection	
		31: High torque bias (Pr.11-30)	
		32: Middle torque bias (Pr.11-31)	
		33: Low torque bias (Pr.11-32)	
		34~37: Reserved	
		38: Disable EEPROM write function	
		39: Torque command direction	
		40: Force coast to stop	
		41: HAND switch	
		42: AUTO switch	
		43~47: Reserved	
		48: Mechanical gear ratio switch	
		49: Drive enable	

Chapter 10 Summary of Parameter Settings \| C200 Series

| Parameter | Explanation | Settings | Factory
 Setting |
| :---: | :--- | :--- | :---: | :---: |
| $02-51$ | Status of Multi-function
 Output Terminal | Monitor the status of multi-function output terminals | Read
 only |
| $02-52$ | Display External Output
 terminal occupied by PLC | Monitor the status of PLC input terminals | Read
 only |
| $02-53$ | Display Analog Input
 Terminal occupied by PLC | Monitor the status of PLC output terminals | Read
 only |
| $02-54$ | Display the Frequency
 Command Executed by
 External Terminal | Read only | Read
 only |
| $02-55$ | Digital Output Gain (DFM2) | $0 \sim 106$ | 1 |

03 Analog Input/Output Parameters

	Parameter	Explanation	Settings	Factory Setting
N	03-23	Multi-function Output 2 (AFM2)	1: Frequency command (Hz)	0
			2: Motor speed (Hz)	
			3: Output current (rms)	
			4: Output voltage	
			5: DC Bus voltage	
			6: Power factor	
			7: Power	
			8: Output torque	
			9: AVI	
			10: ACI	
			11: AUI	
			12: Iq current	
			13: Iq feedback value	
			14: Id current	
			15: Id feedback value	
			16: Vq-axis voltage	
			17: Vd-axis voltage	
			18: Torque command	
			19: Reserved	
			20: CANopen analog output	
			21: RS485 analog output	
			22: Reserved	
			23: Constant voltage/current output	
N	03-21	Gain of Analog Output 1 (AFM1)	0~500.0\%	100.0
N	03-22	Analog Output 1 when in REV Direction (AFM1)	0 : Absolute output voltage 1: Reverse output 0V; Positive output 0-10V 2: Reverse output 5-0V; Positive output 5-10V	0
N	03-24	Gain of Analog Output 2 (AFM2)	0~500.0\%	100.0
N	03-25	Analog Output 2 when in REV Direction (AFM2)	0 : Absolute output voltage 1: Output 0 V in REV direction; output $0-10 \mathrm{~V}$ in FWD direction 2: Output 5-0V in REV direction; output 5-10V in FWD direction	0
	03-26	Reserved		
	03-27	Reserved		
N	03-28	AVI Selection	$\begin{aligned} & 0: 0-10 \mathrm{~V} \\ & \text { 1: } 0-20 \mathrm{~mA} \\ & \text { 2: } 4-20 \mathrm{~mA} \end{aligned}$	0
N	03-29	ACI Selection	$\begin{aligned} & 0: 4-20 \mathrm{~mA} \\ & 1: 0-10 \mathrm{~V} \\ & 2: 0-20 \mathrm{~mA} \end{aligned}$	0
N	03-30	Status of PLC Output Terminal	Monitor the status of PLC output terminals	Read only
	03-31	AFM2 0-20mA Output Selection	0: 0-20mA Output 1: 4-20mA Output	0
	03-32	AFM1 DC output setting level	0.00~100.00\%	0.00
	03-33	AFM2 DC Output Setting Level	0.00~100.00\%	0.00
	$\begin{gathered} 03-34 \\ \sim \\ 03-38 \end{gathered}$	Reserved		
N	03-39	keypad potentiometer Selection	0: No function 1: Frequency command	0
N	03-40	keypad potentiometer Input Bias	-100.0~100.0\%	0.0

Chapter 10 Summary of Parameter Settings | C200 Series

	Parameter	Explanation	Settings	Factory Setting
N	03-70	Negative AUI Voltage Proportional Low Point	0.00~ -100.00\%	0.00
N	03-71	Negative AUI Voltage Mid Point	0.00~ -10.00V	-5.00
N	03-72	Negative AUI Voltage Proportional Mid Point	0.00~-100.00\%	-50.00
N	03-73	Negative AUI Voltage High Point	0.00~ -10.00V	-10.00
N	03-74	Negative AUI Voltage Proportional High Point	0.00~-100.00\%	$\begin{gathered} -100.0 \\ 0 \end{gathered}$

04 Multi-step Speed Parameters

	Parameter	Explanation	Settings	Factory Setting
N	04-00	1st Step Speed Frequency	0.00~600.00Hz	0
N	04-01	2nd Step Speed Frequency	0.00~600.00Hz	0
N	04-02	3rd Step Speed Frequency	0.00~600.00Hz	0
N	04-03	4th Step Speed Frequency	0.00~600.00Hz	0
N	04-04	5th Step Speed Frequency	0.00~600.00Hz	0
N	04-05	6th Step Speed Frequency	0.00~600.00Hz	0
N	04-06	7th Step Speed Frequency	0.00~600.00Hz	0
N	04-07	8th Step Speed Frequency	0.00~600.00Hz	0
N	04-08	9th Step Speed Frequency	0.00~600.00Hz	0
N	04-09	10th Step Speed Frequency	0.00~600.00Hz	0
N	04-10	11th Step Speed Frequency	0.00~600.00Hz	0
N	04-11	12th Step Speed Frequency	0.00~600.00Hz	0
N	04-12	13th Step Speed Frequency	0.00~600.00Hz	0
N	04-13	14th Step Speed Frequency	0.00~600.00Hz	0
N	04-14	15th Step Speed Frequency	0.00~600.00Hz	0

05 Motor Parameters

	Parameter	Explanation	Settings	Factory Setting
	05-00	Motor Auto Tuning	0 : No function 1: Rolling test for induction motor(IM) (Rs, Rr, Lm, Lx, no-load current) 2: Static test for induction motor(IM) 3: No function 4: Rolling test for PM motor magnetic pole 5: Rolling test for PM motor 6: Rolling test for IM motor flux curve 12: FOC Sensorless inertia estimation 13: High frequency and blocked rotor test for PM motor	0
	05-01	Full-load Current of Induction Motor 1(A)	10~120\% of drive's rated current	\#.\#\#
	05-02	Rated Power of Induction Motor 1(kW)	0~655.35kW	\#.\#\#
	05-03	Rated Speed of Induction Motor 1 (rpm)	$\begin{aligned} & 0 \sim 65535 \\ & 1710(60 \mathrm{~Hz} 4 \text { poles }) ; 1410(50 \mathrm{~Hz} 4 \text { poles }) \end{aligned}$	1710
	05-04	Pole Number of Induction Motor 1	2~20	4
	05-05	No-load Current of Induction Motor 1 (A)	0~ Pr.05-01 factory setting	\#.\#\#
	05-06	Stator Resistance (Rs) of Induction Motor 1	0~65.535m	0
	05-07	Rotor Resistance (Rr) of Induction Motor 1	0~65.535m	0
	05-08	Magnetizing Inductance (Lm) of Induction Motor 1	0~6553.5mH	0
	05-09	Stator Inductance (Lx) of Induction Motor 1	0~6553.5mH	0
	$\begin{aligned} & 05-10 \sim \\ & 05-12 \end{aligned}$	Reserved		
	05-13	Full-load Current of Induction Motor 2 (A)	10~120\%	\#.\#\#
	05-14	Rated Power of Induction Motor 2 (kW)	0~655.35kW	\#.\#\#
	05-15	Rated Speed of Induction Motor 2 (rpm)	$\begin{aligned} & 0 \sim 65535 \\ & 1710(60 \mathrm{~Hz} 4 \text { poles }) ; 1410(50 \mathrm{~Hz} 4 \text { poles }) \end{aligned}$	1710
	05-16	Pole Number of Induction Motor 2	2~20	4
	05-17	No-load Current of Induction Motor 2 (A)	0~ Pr.05-01 factory setting	\#.\#\#
	05-18	Stator Resistance (Rs) of Induction Motor 2	0~65.535m	0
	05-19	Rotor Resistance (Rr) of Induction Motor 2	0~65.535m	0
	05-20	Magnetizing Inductance (Lm) of Induction Motor 2	0~6553.5mH	0
	05-21	Stator Inductance (Lx) of Induction Motor 2	0~6553.5mH	0
	05-22	Induction Motor 1/ 2 Selection	1: motor 1 2: motor 2	1
N	05-23	Frequency for Y-connection/ \triangle-connectio n Switch of Induction Motor	0.00~600.00Hz	60.00
	05-24	Y-connection/ \triangle-connectio n Switch of Induction Motor	0: Disable 1: Enable	0
N	05-25	Delay Time for Y-connection/ \triangle-connectio n Switch of Induction	0.000~60.000 sec.	0.200

Parameter	Explanation	Settings	Factory Setting
	Motor		
05-26	Accumulative Watt-second of Motor in Low Word (W-sec)	Read only	\#.\#
05-27	Accumulative Watt-second of Motor in High Word (W-sec)	Read only	\#.\#
05-28	Accumulative Watt-hour of Motor (W-Hour)	Read only	\#.\#
05-29	Accumulative Watt-hour of Motor in Low Word (KW-Hour)	Read only	\#.\#
05-30	Accumulative Watt-hour of Motor in High Word (KW-Hour)	Read only	\#.\#
05-31	Accumulative Motor Operation Time (Min)	00~1439	0
05-32	Accumulative Motor Operation Time (day)	00~65535	0
05-33	Induction Motor and Permanent Magnet Motor Selection	0: Induction Motor 1: Permanent Magnet Motor	0
05-34	Full-load current of Permanent Magnet Motor	0.00~655.35Amps	0.00
05-35	Rated Power of Permanent Magnet Motor	0.00~655.35kW	0.00
05-36	Rated speed of Permanent Magnet Motor	0~65535rpm	2000
05-37	Pole number of Permanent Magnet Motor	0~65535	10
05-38	Inertia of Permanent Magnet Motor	$0.0 \sim 6553.5 \mathrm{~kg} . \mathrm{cm}^{2}$	0.0
05-39	Stator Resistance of PM Motor	0.000~65.535	0.000
05-40	Permanent Magnet Motor Ld	$0.00 \sim 655.35 \mathrm{mH}$	0.000
05-41	Permanent Magnet Motor Lq	$0.00 \sim 655.35 \mathrm{mH}$	0.000
05-42	PG Offset angle of PM Motor	0.0~360.0 ${ }^{\circ}$	0.0
05-43	Ke parameter of PM Motor	0~65535 (Unit: V/1000rpm)	0

06 Protection Parameters

	Parameter	Explanation	Settings	Factory Setting
N	06-00	Low Voltage Level	$\begin{aligned} & 230 \mathrm{~V}: 150.0 \sim 220.0 \mathrm{Vdc} \\ & 460 \mathrm{~V}: 300.0 \sim 440.0 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 180.0 \\ & 360.0 \end{aligned}$
N	06-01	Over-voltage Stall Prevention	$\begin{aligned} & 0 \text { 0: Disabled } \\ & 230 \mathrm{~V}: 0.0 \sim 450.0 \mathrm{Vdc} \\ & 460 \mathrm{~V}: 0.0 \sim 900.0 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 380.0 \\ & 760.0 \end{aligned}$
N	06-02	Selection for Over-voltage Stall Prevention	0 : Traditional over-voltage stall prevention 1: Smart over-voltage prevention	0
N	06-03	Over-current Stall Prevention during Acceleration	Normal Load: 0~160\%(100\%: drive's rated current) Heavy Load: 0~180\%(100\%: drive's rated current)	$\begin{aligned} & 120 \\ & 150 \end{aligned}$
N	06-04	Over-current Stall Prevention during Operation	Normal Load: 0~160\%(100\%: drive's rated current) Heavy Load: 0~180\%(100\%: drive's rated current)	$\begin{aligned} & 120 \\ & 150 \end{aligned}$
N	06-05	Accel. /Decel. Time Selection of Stall Prevention at Constant Speed	0 : by current accel/decel time 1: by the 1st accel/decel time 2: by the 2nd accel/decel time 3: by the 3rd accel/decel time 4: by the 4th accel/decel time 5: by auto accel/decel	0
N	06-06	Over-torque Detection Selection (OT1)	0 : No function 1: Over-torque detection during constant speed operation, continue to operate after detection 2: Over-torque detection during constant speed operation, stop operation after detection 3: Over-torque detection during operation, continue to operate after detection 4: Over-torque detection during operation, stop operation after detection	0
N	06-07	Over-torque Detection Level (OT1)	10~250\% (100\%: drive's rated current)	120
N	06-08	Over-torque Detection Time (OT1)	0.0~60.0 sec.	0.1
N	06-09	Over-torque Detection Selection (OT2)	0 : No function 1: Over-torque detection during constant speed operation, continue to operate after detection 2: Over-torque detection during constant speed operation, stop operation after detection 3: Over-torque detection during operation, continue to operation after detection 4: Over-torque detection during operation, stop operation after detection	0
N	06-10	Over-torque Detection Level (OT2)	10~250\% (100\%: drive's rated current)	120
N	06-11	Over-torque Detection Time (OT2)	$0.1 \sim 60.0 \mathrm{sec}$.	0.1
N	06-12	Current Limit	0~250\% (100\%: drive's rated current)	150
N	06-13	Electronic Thermal Relay Selection (Motor 1)	0: Inverter motor 1: Standard motor 2: Disable	2
N	06-14	Electronic Thermal Characteristic for Motor 1	30.0~600.0 sec.	60.0
N	06-15	Heat Sink Over-heat (OH) Warning	$0.0 \sim 110.0^{\circ} \mathrm{C}$	85.0
N	06-16	Stall Prevention Limit Level	0~100\% (Pr.06-03, Pr.06-04)	50
	06-17	Present Fault Record	0 : No fault record	0
	06-18	Second Most Recent Fault Record	1: Over-current during acceleration (ocA)	0

Parameter	Explanation	Settings	Factory Setting
06-19	Third Most Recent Fault Record	2: Over-current during deceleration (ocd)	0
06-20	Fourth Most Recent Fault Record	3: Over-current during constant speed(ocn)	0
06-21	Fifth Most Recent Fault Record	4: Ground fault (GFF)	0
06-22	Sixth Most Recent Fault Record	5: IGBT short-circuit (occ)	0
		6: Over-current at stop (ocS)	
		7: Over-voltage during acceleration (ovA)	
		8: Over-voltage during deceleration (ovd)	
		9: Over-voltage during constant speed (ovn)	
		10: Over-voltage at stop (ovS)	
		11: Low-voltage during acceleration (LvA)	
		12: Low-voltage during deceleration (Lvd)	
		13: Low-voltage during constant speed (Lvn)	
		14: Stop mid-low voltage (LvS)	
		15: Phase loss protection (OrP)	
		16: IGBT over-heat (oH1)	
		17: Capacitance over-heat (oH 2)	
		18: tH1o (TH1 open: IGBT over-heat protection error)	
		19: tH2o (TH2 open: capacitance over-heat protection error)	
		20: Reserved	
		21: Drive over-load (oL)	
		22: Electronics thermal relay 1 (EoL1)	
		23: Electronics thermal relay 2 (EoL2)	
		24: Motor overheat (oH3) (PTC)	
		25: Reserved	
		26: Over-torque 1 (ot1)	
		27: Over-torque 2 (ot2)	
		28: Low current (uC)	
		29: Reserved	
		30: Memory write-in error (cF1)	
		31: Memory read-out error (cF2)	
		32: Reserved	
		33: U-phase current detection error (cd1)	
		34: V-phase current detection error (cd2)	
		35: W-phase current detection error (cd3)	
		36: Clamp current detection error (Hd0)	
		37: Over-current detection error (Hd1)	
		38: Over-voltage detection error (Hd2)	
		39: Ground current detection error (Hd3)	
		40: Auto tuning error (AUE)	
		41: PID feedback loss (AFE)	
		42: PG feedback error (PGF1)	
		43: PG feedback loss (PGF2)	
		44: PG feedback stall (PGF3)	
		45: PG slip error (PGF4)	
		46: Reserved	
		47: Reserved	
		48: Analog current input loss (ACE)	
		49: External fault input (EF)	
		50: Emergency stop (EF1)	
		51: External Base Block (bb)	
		52: Password error (PcodE)	
		53: Reserved	
		54: Communication error (CE1)	
		55: Communication error (CE2)	
		56: Communication error (CE3)	

	Explanation	Settings	Factory Setting
	Status of Multi-function Input Terminal at Malfunction	0000h~FFFFh	Read only
	Status of Multi-function Output Terminal at Malfunction	0000h~FFFFh	Read only
	Drive Status at Malfunction	0000h~FFFFh	Read only
	Reserved		
	Reserved		
	Treatment to Output Phase Loss Detection (OPHL)	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	3
	Deceleration Time of Output Phase Loss	0.000~65.535 sec	0.500
	Current Bandwidth	0.00~655.35\%	1.00
	DC Brake Time of Output Phase Loss	0.000~65.535sec	0.000
	Reserved		
	Time for Input Phase Loss Detection	0.00~600.00 sec.	0.20
	Reserved		
	Ripple of Input Phase Loss	230V model: 0.0~160.0 Vdc 460 V model: $0.0 \sim 320.0 \mathrm{Vdc}$	$\begin{aligned} & 30.0 \\ & / 60.0 \end{aligned}$
	Treatment for the detected Input Phase Loss (OrP)	0 : warn and ramp to stop 1: warn and coast to stop	0
	Reserved		
	Derating Protection	0: constant rated current and limit carrier wave by load current and temperature 1: constant carrier frequency and limit load current by setting carrier wave 2: constant rated current(same as setting 0), but close current limit	0
	Reserved		
	Software Detection GFF Current Level	0.0~6553.5 \%	60.0
	Software Detection GFF Filter Time	0.0~6553.5 \%	0.10
	Disable Level of dEb	$\begin{aligned} & \text { 230V series: } 0.0 \sim 220.0 \mathrm{Vdc} \\ & 460 \mathrm{~V} \text { series: } 0.0 \sim 440.0 \mathrm{Vdc} \end{aligned}$	$\begin{array}{r} 180.0 \\ / 360.0 \end{array}$
	Fault Record 1 (Min)	0~64799 min	Read only
	Fault Record 2 (Min)	0~64799 min	Read only
	Fault Record 3 (Min)	0~64799 min	Read only
	Fault Record 4 (Min)	0~64799 min	Read only
	Fault Record 5 (Min)	0~64799 min	Read only
	Fault Record 6 (Min)	0~64799 min	Read only
	Days of operation	Read only	Read only

Chapter 10 Summary of Parameter Settings | C200 Series

Parameter	Explanation	Settings	Factory Setting
$06-70$	Minutes of operation	Read only	Read only
	Low Current Setting Level	$0.0 \sim 6553.5 \%$	0.0
$06-71$	Low Current Detection Time	$0.00 \sim 655.35 \mathrm{sec}$	0.00
$06-73$	Treatment for low current	$0:$ No function $1:$ Warn and coast to stop $2:$ Warn and ramp to stop by 2nd deceleration time $3:$ Warn and operation continue	0

07 Special Parameters

	Parameter	Explanation	Settings	Factory Setting
N	07-00	Software Brake Level	$\begin{aligned} & \text { 230V: } 350.0 \sim 450.0 \mathrm{Vdc} \\ & 460 \mathrm{~V}: 700.0 \sim 900.0 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 380.0 \\ & 760.0 \end{aligned}$
N	07-01	DC Brake Current Level	0~100\%	0
N	07-02	DC Brake Time at Start-up	0.0~60.0 sec.	0.0
N	07-03	DC Brake Time at Stop	0.0~60.0 sec.	0.0
N	07-04	Startup Frequency for DC Brake	0.00~600.00Hz	0.00
N	07-05	Reserved		
N	07-06	Restart after Momentary Power Loss	0: Stop operation 1: Speed search for last frequency command 2: Speed search for minimum output frequency	0
N	07-07	Maximum Power Loss Duration	$0.1 \sim 20.0 \mathrm{sec}$.	2.0
N	07-08	Base Block Time	$0.1 \sim 5.0 \mathrm{sec}$.	0.5
N	07-09	Current Limit for Speed Search	20~200\%	50
N	07-10	Treatment to Reboots After Fault	0: Stop operation 1: Speed search starts with current speed 2: Speed search starts with minimum output frequency	0
N	07-11	Auto Restart After Fault	0~10	0
N	07-12	Speed Search during Start-up	0: Disable 1: Speed search for maximum output frequency 2: Speed search for start-up motor frequency 3: Speed search for minimum output frequency	0
N	07-13	Decel. Time to Momentary Power Loss	0: Disable 1: 1st decel. time 2: 2nd decel. time 3: 3rd decel. time 4: 4th decel. time 5: current decel. time 6: Auto decel. time	0
N	07-14	DEB Return Time	0.0~25.0sec	0.0
N	07-15	Dwell Time at Accel.	$0.00 \sim 600.00 \mathrm{sec}$	0.00
N	07-16	Dwell Frequency at Accel.	$0.00 \sim 600.00 \mathrm{~Hz}$	0.00
N	07-17	Dwell Time at Decel.	0.00~600.00sec	0.00
N	07-18	Dwell Frequency at Decel.	$0.00 \sim 600.00 \mathrm{~Hz}$	0.00
N	07-19	Fan Cooling Control	0: Fan always ON 1: 1 minute after the AC motor drive stops, fan will be OFF 2: When the AC motor drive runs, the fan is ON. When the AC motor drive stops, the fan is OFF 3: Fan turns ON when preliminary heat sink temperature (around $60^{\circ} \mathrm{C}$) is attained. 4: Fan always OFF	0
N	07-20	Emergency Stop (EF) \& Force to Stop Selection	0 : Coast stop 1: By deceleration Time 1 2: By deceleration Time 2 3: By deceleration Time 3 4: By deceleration Time 4 5: System Deceleration 6: Automatic Deceleration	0
N	07-21	Auto Energy-saving Operation	0: Disable 1: Enable	0

Chapter 10 Summary of Parameter Settings | C200 Series

	Parameter	Explanation	Settings	Factory Setting
N	07-22	Energy-saving Gain	10~1000\%	100
N	07-23	Auto Voltage Regulation(AVR) Function	0: Enable AVR 1: Disable AVR 2: Disable AVR during deceleration	0
N	07-24	Filter Time of Torque Command (V/F and SVC control mode)	0.001~10.000 sec	0.020
N	07-25	Filter Time of Slip Compensation (V/F and SVC control mode)	0.001~10.000 sec	0.100
N	07-26	Torque Compensation Gain (V/F and SVC control mode)	0~10	0
N	07-27	Slip Compensation Gain (V/F and SVC control mode)	0.00~10.00	0.00
N	07-28	Reserved		
N	07-29	Slip Deviation Level	0.0~100.0\% 0: No detection	0
N	07-30	Detection Time of Slip Deviation	$0.0 \sim 10.0 \mathrm{sec}$	1.0
N	07-31	Over Slip Treatment	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	0
N	07-32	Motor Hunting Gain	0~10000	1000
N	07-33	Auto Reset Time for Restart after Fault	0.0~6000.0 sec	60.0

O8 High-function PID Parameters
Parameter

	Parameter	Explanation	Settings	Factory Setting
N	09-00	COM1 Communication Address	1~254	1
N	09-01	COM1 Transmission Speed	4.8~115.2Kbps	19.2
N	09-02	COM1 Transmission Fault Treatment	0 : Warn and continue operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning and continue operation	3
N	09-03	COM1 Time-out Detection	$0.0 \sim 100.0 \mathrm{sec}$.	0.0
N	09-04	COM1 Communication Protocol	0: 7N1 (ASCII) 1: 7N2 (ASCII) 2: 7E1 (ASCII) 3: 701 (ASCII) 4: 7E2 (ASCII) 5: 702 (ASCII) 6: 8N1 (ASCII) 7: 8N2 (ASCII) 8: 8E1 (ASCII) 9: 801 (ASCII) 10: 8E2 (ASCII) 11: 8 O2 (ASCII) 12: 8N1 (RTU) 13: 8N2 (RTU) 14: 8E1 (RTU) 15: 801 (RTU) 16: 8E2 (RTU) 17: 802 (RTU)	13
	$\begin{gathered} 09-05 \\ \sim \\ 09-08 \end{gathered}$	Reserved		
N	09-09	Response Delay Time	0.0~200.0ms	2.0
N	09-10	Main Frequency of the Communication	0.00~600.00Hz	60.00
N	09-11	Block Transfer 1	0~65535	0
N	09-12	Block Transfer 2	0~65535	0
N	09-13	Block Transfer 3	0~65535	0
N	09-14	Block Transfer 4	0~65535	0
N	09-15	Block Transfer 5	0~65535	0
N	09-16	Block Transfer 6	0~65535	0
N	09-17	Block Transfer 7	0~65535	0
N	09-18	Block Transfer 8	0~65535	0
N	09-19	Block Transfer 9	0~65535	0
N	09-20	Block Transfer 10	0~65535	0
N	09-21	Block Transfer 11	0~65535	0
N	09-22	Block Transfer 12	0~65535	0
N	09-23	Block Transfer 13	0~65535	0
N	09-24	Block Transfer 14	0~65535	0
N	09-25	Block Transfer 15	0~65535	0
N	09-26	Block Transfer 16	0~65535	0

Parameter	Explanation	Settings	Factory Setting
$\begin{gathered} 09-27 \\ \underset{\sim}{\sim}-29 \end{gathered}$	Reserved		
09-30	Communication Decoding Method	0 : Decoding Method 1 1: Decoding Methond 2	1
09-31	Internal Communication Protocol	0: Modbus 485	0
$\begin{gathered} 09-32 \\ \sim \\ 09-34 \end{gathered}$	Reserved		
09-35	PLC Address	1~254	2
09-36	CANopen Slave Address	$\begin{aligned} & \text { 0: Disable } \\ & \text { 1~127 } \end{aligned}$	0
09-37	CANopen Speed	$\begin{aligned} & \text { 0: } 1 \mathrm{M} \\ & \text { 1: } 500 \mathrm{k} \\ & \text { 2: } 250 \mathrm{k} \\ & \text { 3: } 125 \mathrm{k} \\ & \text { 4: } 100 \mathrm{k} \text { (Delta only) } \\ & \text { 5: } 50 \mathrm{k} \end{aligned}$	0
09-38	CANopen Frequency Gain	$0.00 \sim 2.00$	1.00
09-39	CANopen Warning Record	bit 0: CANopen Guarding Time out bit 1: CANopen Heartbeat Time out bit 2: CANopen SYNC Time out bit 3: CANopen SDO Time out bit 4: CANopen SDO buffer overflow bit 5: Can Bus Off bit 6: Error protocol of CANopen	0
09-40	CANopen Decoding Method	0 : Delta defined decoding method 1: CANopen DS402 Standard	1
09-41	CANopen Communication Status	0: Node Reset State 1: Com Reset State 2: Boot up State 3: Pre Operation State 4: Operation State 5: Stop State	Read Only
09-42	CANopen Control Status	0 : Not ready for use state 1: Inhibit start state 2: Ready to switch on state 3: Switched on state 4: Enable operation state 7: Quick Stop Active state 13: Err Reaction Activation state 14: Error state	Read Only
09-43	Reset CANopen Index	bit0: reset address 20XX to 0 . bit1: reset address 264X to 0 bit2: reset address 26AX to 0 bit3: reset address 60XX to 0	65535
09-44	CAN error state	0~65535	Read only

10 Speed Feedback Control Parameters

DOTE IM: Induction Motor; PM: Permanent Magnet Motor

	Parameter	Explanation	Settings	Factory Setting
	10-00	Reserved		
	10-01	Encoder Pulse	1~20000	600
	10-02	Encoder Input Type Setting (MI7=A, MI8=B)	0: Disable 1: Phase A leads in a forward run command and phase B leads in a reverse run command 2: Phase B leads in a forward run command and phase A leads in a reverse run command 3: Phase A is a pulse input and phase B is a direction input. (low input=reverse direction, high input=forward direction) 4: Phase A is a pulse input and phase B is a direction input. (low input=forward direction, high input=reverse direction) 5: Single-phase input	0
	10-03	Reserved		
N	10-04	Electrical Gear at Load Side A1	1~65535	100
N	10-05	Electrical Gear at Motor Side B1	1~65535	100
N	10-06	Electrical Gear at Load Side A2	1~65535	100
N	10-07	Electrical Gear at Motor Side B2	1~65535	100
N	10-08	Treatment for Encoder Feedback Fault	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2
N	10-09	Detection Time of Encoder Feedback Fault	$0.0 \sim 10.0 \mathrm{sec}$ $0 \text { : No function }$	1.0
N	10-10	Encoder Stall Level	$\begin{aligned} & 0 \sim 120 \% \\ & 0: \text { No function } \end{aligned}$	115
N	10-11	Detection Time of Encoder Stall	$0.0 \sim 2.0 \mathrm{sec}$	0.1
N	10-12	Treatment for Encoder Stall	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2
N	10-13	Encoder Slip Range	0~50\% (0: disable)	50
N	10-14	Detection Time of Encoder Slip	0.0~10.0sec	0.5
N	10-15	Treatment for Encoder Stall and Slip Error	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2
	$\begin{gathered} 10-16 \\ \sim \\ 10-23 \end{gathered}$	Reserved		
N	10-24	FOC\&TQC Function Control	0~65535	0
N	10-25	FOC Bandwidth of Speed Observer	$20.0 \sim 100.0 \mathrm{~Hz}$	40.0
N	10-26	FOC Minimum Stator Frequency	0.0~10.0\%fN	2.0
N	10-27	FOC Low-pass Filter Time Constant	1~1000ms	50
N	10-28	FOC Excitation Current Rise Time	33~100\%Tr	100
N	10-29	Top Limit of Frequency Deviation	0.00~100.00Hz	20.00

	Parameter	Explanation	Settings	Factory Setting
	10-30	Reserved		
N	10-31	Obeserver Gain	0~65535	600
N	10-32	PM Sensorless Obeserver Bandwith for High Speed Zone	0.00~600.00Hz	4.00
N	10-33	PM Sensorless Obeserver Bandwith for Low Speed Zone	0.00~600.00Hz	0.50
N	10-34	PM Sensorless Observer Low-pass Filter Gain	0.00~655.35	1.00
N	10-35	Speed bandwidth switching	0.00~655.35Hz	10.00
N	10-36	High/Low speed OBS bandwidth	0.00~655.35Hz	2.00
N	10-37	PM Sensorless Control Word	0000h~FFFFh	0000
N	10-38	Required Time for PM Sensorless d-axis Current Command Return to 0	0.0~6553.5 sec	1.0
N	10-39	PM Sensorless Frequency Level to switch from V/F Mode to Detection Mode	0.00~600.00Hz	20.00
N	10-40	PM Sensorless Frequency Level to switch from Detection Mode to V/F Mode	0.00~600.00Hz	20.00
N	10-41	I/F mode, low pass-filter time	0.0~6.0sec	0.2
N	10-42	Initial Angle Detection Time	0~10ms	0

11 Advanced Parameters

NOTE IM: Induction Motor; PM: Permanent Magnet Motor

\begin{tabular}{|c|c|c|c|c|}
\hline \& Parameter \& Explanation \& Settings \& Factory Setting \\
\hline \& 11-00 \& System Control \& \begin{tabular}{l}
bit 0: Auto tuning for ASR and APR \\
bit 1: Inertia estimate (only for FOCPG mode) \\
bit 2: Zero servo \\
bit 3: Dead Time compensation closed \\
Bit 7: Selection to save or not save the freqeuncy
\end{tabular} \& 0 \\
\hline \(N\) \& 11-01 \& Per Unit of System Inertia \& 1~65535 (\(256=1 \mathrm{PU}\)) \& 400 \\
\hline \(N\) \& 11-02 \& ASR1/ASR2 Switch Frequency \& \(5.00 \sim 600.00 \mathrm{~Hz}\) (0: Disable) \& 7.00 \\
\hline \(N\) \& 11-03 \& ASR1 Low-speed Bandwidth \& 1~40Hz (IM)/ 1~100Hz (PM) \& 10 \\
\hline \(N\) \& 11-04 \& ASR2 High-speed Bandwidth \& 1~40Hz (IM)/ 1~100Hz (PM) \& 10 \\
\hline \(N\) \& 11-05 \& Zero-speed Bandwidth \& 1~40Hz (IM)/ 1~100Hz (PM) \& 10 \\
\hline \(N\) \& 11-06 \& ASR Control (P) 1 \& \(0 \sim 40 \mathrm{~Hz}\) (IM)/ 1~100Hz (PM) \& 10 \\
\hline \(N\) \& 11-07 \& ASR Control (I) 1 \& \(0.000 \sim 10.000 \mathrm{sec}\) \& 0.100 \\
\hline N \& 11-08 \& ASR Control (P) 2 \& \(0 \sim 40 \mathrm{~Hz}(\mathrm{IM}) / \mathrm{0} 100 \mathrm{~Hz}\) (PM) \& 10 \\
\hline \(N\) \& 11-09 \& ASR Control (I) 2 \& \(0.000 \sim 10.000 \mathrm{sec}\) \& 0.100 \\
\hline \(N\) \& 11-10 \& P Gain of Zero Speed \& \(0 \sim 40 \mathrm{~Hz}(\mathrm{IM}) / \mathrm{0} 100 \mathrm{~Hz}\) (PM) \& 10 \\
\hline \(N\) \& 11-11 \& I Gain of Zero Speed \& 0.000~10.000 sec \& 0.100 \\
\hline N \& 11-12 \& Gain for ASR Speed Feed Forward \& 0~100\% \& 0 \\
\hline \(N\) \& 11-13 \& PDFF Gain \& 0~200\% \& 30 \\
\hline \(N\) \& 11-14 \& Low-pass Filter Time of ASR Output \& \(0.000 \sim 0.350 \mathrm{sec}\) \& 0.008 \\
\hline \(N\) \& 11-15 \& Notch Filter Depth \& 0~20db \& 0 \\
\hline \(N\) \& 11-16 \& Notch Filter Frequency \& \(0.00 \sim 200.00 \mathrm{~Hz}\) \& 0.00 \\
\hline \(N\) \& 11-17 \& Forward Motor Torque Limit \& 0~500\% \& 500 \\
\hline \(N\) \& 11-18 \& Forward Regenerative Torque Limit \& 0~500\% \& 500 \\
\hline \(N\) \& 11-19 \& Reverse Motor Torque Limit \& 0~500\% \& 500 \\
\hline \(N\) \& 11-20 \& Reverse Regenerative Torque Limit \& 0~500\% \& 500 \\
\hline \(N\) \& 11-21 \& Gain Value of Flux Weakening Curve for Motor 1 \& 0~200\% \& 90 \\
\hline \(N\) \& 11-22 \& Gain Value of Flux Weakening Curve for Motor 2 \& 0~200\% \& 90 \\
\hline \multirow[t]{2}{*}{\(N\)} \& 11-23 \& Speed Response of Flux Weakening Area \& 0~150\% \& 65 \\
\hline \& \[
\begin{gathered}
11-24 \\
\underset{11-26}{2} \\
\hline
\end{gathered}
\] \& \multicolumn{3}{|l|}{Reserved} \\
\hline \multirow[t]{2}{*}{N

N} \& 11-27 \& Max. Torque Command \& 0~500\% \& 100

\hline \& 11-28 \& Source of Torque Offset \& | 0 : No function |
| :--- |
| 1: Analog signal input (Pr.03-00) |
| 2: RS485 communication (Pr.11-29) |
| 3: Control by external terminal (Pr.11-30~11-32) | \& 0

\hline
\end{tabular}

	Parameter	Explanation	Settings	Factory Setting
N	11-29	Torque Offset Setting	0~100\%	0.0
N	11-30	High Torque Offset	0~100\%	30.0
N	11-31	Middle Torque Offset	0~100\%	20.0
N	11-32	Low Torque Offset	0~100\%	10.0
N	11-33	Source of Torque Command	0: Digital keypad 1: RS-485 communication (Pr.11-34) 2: Analog input (Pr.03-00) 3: CANopen	0
N	11-34	Torque Command	-100.0~+100.0\% (Pr.11-27=100\%)	0.0
N	11-35	Filter Time of Torque Command	0.000~1.000sec	0.000
	11-36	Speed Limit Selection	0: Set by Pr.11-37 (Forward speed limit) and Pr.11-38 (Reverse speed limit) 1: Set by Pr.11-37,11-38 and Pr.00-20 (Source of Master Frequency Command) 2: Set by Pr.00-20 (Source of Master Frequency Command).	0
N	11-37	Forward Speed Limit (torque mode)	0~120\%	10
N	11-38	Reverse Speed Limit (torque mode)	0~120\%	10
	11-39	Zero Torque Command Mode	0 : Torque mode 1: Speed mode	0

Chapter 11 Description of Parameter Settings

00 Drive Parameters

\wedge This parameter can be set during operation.

78-93
 Identity Code of the AC Motor Drive

Factory Setting: \#.\#
Settings Read Only

78-9 (Display AC Motor Drive Rated Current

Factory Setting: \#.\#
Settings Read Only
1 Pr. 00-00 displays the identity code of the AC motor drive. Using the following table to check if Pr.00-01 setting is the rated current of the AC motor drive. Pr.00-01 corresponds to the identity code Pr.00-01.
1 The factory setting is the rated current for normal duty. Please set Pr.00-16 to 1 to display the rated current for the heavy duty.

230V Series					
Frame	A0				
kW	0.4	0.75	1.5	2.2	3.7
HP	0.5	1	2	3	5
Pr.00-00	2	4	6	8	10
Rated Current for Heavy Duty (A)	2.8	4.8	7.1	10	16
Rated Current for Normal Duty (A)	3	5	8	11	17

460V Series								
Frame	A0							
kW	0.4	0.75	1.5	2.2	3.7	4.0	5.5	7.5
HP	0.5	1	2	3	5	5.5	7.5	10
Pr.00-00	3	5	7	9	11	93	13	15
Rated Current for Heavy Duty (A)	1.5	2.9	3.8	5.7	8.1	9.5	11	17
Rated Current for Normal Duty (A)	1.6	3.0	4.0	6.0	9.0	10.5	12	18

Parameter Reset
Factory Setting: 0
Settings 0: No Function
1: Write protection for parameters
5: Reset KWH display to 0
6: Reset PLC
7: Reset CANopen Index (Slave)
8: keypad lock
9: All parameters are reset to factory settings(base frequency is 50 Hz)
10: All parameters are reset to factory settings (base frequency is 60 Hz)
[1] When it is set to 1 , all parameters are read only except Pr.00-02~00-08 and it can be used with password setting for password protection. It needs to set Pr.00-02 to 0 before changing other parameter settings.
[10] When it is set to 9 or 10: all parameters are reset to factory settings. If password is set in Pr.00-08,
input the password set in Pr.00-07 to reset to factory settings.
(1) When it is set to 5 , KWH display value can be reset to 0 even when the drive is operating. Pr. 05-26, 05-27, 05-28, 05-29, 05-30 reset to 0.
[1] When it is set to 6: clear internal PLC program
[1] When it is set to 7: reset the related settings of CANopen slave.

표응 Start-up Display Selection

Factory setting: 0
Settings 0: Display the frequency command (F)
1: Display the actual output frequency (H)
2: Display User define (U)
3: Output current (A)
110 This parameter determines the start-up display page after power is applied to the drive. User defined choice display according to the setting in Pr.00-04.

Factory setting: 3
Settings
0 : Display output current (A)
1: Display counter value (c)
2: Display actual output frequency (H.)
3: Display DC-BUS voltage (v)
4: Display output voltage (E)
5: Display output power angle (n)
6: Display output power in kW (P)
7: Display actual motor speed $\mathrm{rpm}(\mathrm{r}=00$: positive speed; -00 negative speed)
8: Display estimate output torque $\%(t=00$: positive torque; -00 negative torque) (t) (refer to Note 4)
9: Reserved
10: Display PID feedback in \% (b)
11: Display AVI in \% (1.), $0 \sim 10 \mathrm{~V} / 4-20 \mathrm{~mA} / 0-20 \mathrm{~mA}$ corresponds to $0 \sim 100 \%$ (Refer to Note 1)
12: Display ACl in \% (2.), $4 \sim 20 \mathrm{~mA} / 0 \sim 10 \mathrm{~V} / 0-20 \mathrm{~mA}$ corresponds to 0~100\% (Refer to Note 1)

13: Display AUI in \% (3.), -10V~10V corresponds to -100~100\%(Refer to Note 2)
14: Display the temperature of IGBT in oC (i.)
15: Display the temperature of capacitance in oC (c.)
16: The status of digital input (ON/OFF) refer to Pr.02-12 (i) (Refer to Note 2)

17: Display digital output status ON/OFF (Pr.02-18) (o) (Refer to NOTE 3)
18: Display the multi-step speed that is executing (S)
19: The corresponding CPU pin status of digital input (d) (refer to NOTE 2)
20: The corresponding CPU pin status of digital output (0.) (refer to NOTE 3)

21~24: Reserved

25: Overload counting (0.00~100.00\%) (o.) (Refer to Note 5)
26: GFF Ground Fault (Unit :\%)(G.)
27: DC Bus voltage ripple (Unit: Vdc)(r.)
28: Display PLC register D1043 data (C) display in hexadecimal
29: Reserved
30 : Display output of user defined (U)
31 : H page x 00-05 Display user Gain(K)
32~34: Reserved
35: Control Mode display: $0=$ Speed control mode (SPD), $1=$ torque control mode (TQR) (t.)

36: Present operating carrier frequency of drive (Hz) (J.)

NOTE

1. It can display negative values when setting analog input bias (Pr.03-03~03-10).

Example: assume that AVI input voltage is 0V, Pr.03-03 is 10.0% and $\operatorname{Pr} .03-07$ is 4 (Serve bias as the center).
2. Example: If REV, MI1 and MI6 are ON, the following table shows the status of the terminals.

0: OFF, 1: ON

Terminal	MI 8	M 17	MI 6	MI 5	MI 4	MI 3	MI 2	MI 1	REV	FWD
Status	0	0	1	0	0	0	0	1	1	0

If REV, MI1 and MI6 are ON, the value is 0000000010000110 in binary and 0086h in HEX. When Pr.00-04 is set to " 16 " or " 19 ", it will display " 0086 h " with LED U is ON on the keypad KPC-CE01. The setting 16 is the status of digital input by Pr.02-12 setting and the setting 19 is the corresponding CPU pin status of digital input, the FWD/REV action and the three-wire MI are not controlled by Pr.02-12. User can set to 16 to monitor digital input status and then set to 19 to check if the wire is normal.
3. Assume that RY1: Pr.02-13 is set to 9 (Drive ready). After applying the power to the AC motor drive, if there is no other abnormal status, the contact will be ON. The display status will be shown as follows.
N.O. switch status:

Terminal	Reserved				Reserved				Reserved				DFM2	DFM1	Reserved	RY2	RY1
Status	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

At the meanwhile, if Pr.00-04 is set to 17 or 20, it will display in hexadecimal " 0001 h " with LED U is ON on the keypad. The setting 17 is the status of digital output by Pr.02-18 setting and the setting 20 is the corresponding CPU pin status of digital output. User can set 17 to monitor the digital output status and then set to 20 to check if the wire is normal.
4. Setting 8: 100% means the motor rated torque. Motor rated torque $=($ motor rated power $x 60 / 2 \pi) /$ motor rated speed
5. If Pr. $00-04=25$, when display value reaches 100.00%, the drive will show "oL" as an overload warning.

78, 95 Coefficient Gain in Actual Output Frequency

Factory Setting: 0
Settings 0~160.00
10.1 This parameter is to set coefficient gain in actual output frequency. Set Pr.00-04= 31 to display the calculation result on the screen (calculation $=$ output frequency * Pr.00-05).

Settings 1~9998, 10000~65535
Display $0 \sim 3$ (the times of password attempts)
110 This parameter allows user to enter their password (which is set in Pr.00-08) to unlock the parameter protection and to make changes to the parameter.
1 Pr.00-07 and Pr.00-08 are used to prevent the personal misoperation.
1 When the user have forgotten the password, clear the setting by input 9999 and press ENTER key, then input 9999 again and press Enter within 10 seconds. After decoding, all the settings will return to factory setting.

98-98

Parameter Protection Password Setting
Factory Setting: 0
Settings 1~9998, 10000~65535
0: No password protection / password is entered correctly (Pr00-07)
1: Password has been set
[1] To set a password to protect your parameter settings.If the display shows 0 , no password is set nor password has been correctly entered in Pr.00-07. All parameters can then be changed, including Pr.00-08. The first time you can set a password directly. After successful setting of password the display will show 1 . Be sure to write down the password for later use. To cancel the parameter lock, set the parameter to 0 after inputting correct password into Pr. 00-07.
\square How to retrieve parameter protection after decoding by Pr.00-07:
Method 1: Re-enter the password to Pr.00-08 (input the password once).
Method 2: After reboots, password function will be recovered.
Method 3: Input any value into Pr.00-07 (Do not enter the password).
Password Decode Flow Chart

99-93 Reserved

99-19 Control Mode

Factory Setting: 0
Settings 0: Speed mode
1: Reserved
2: Torque mode
This parameter determines the control mode of C200 series AC motor drive.

明-: : Control of Speed Mode

Factory Setting: 0
Settings 0: VF (IM V/f control)
1: VFPG (IM V/f control+ Encoder)
2: SVC(IM sensorless vector control)
3: FOCPG (IM FOC vector control+ encoder)
4~5: Reserved
6 : PM Sensorless (PM field oriented sensorless vector control)
\square This parameter determines the control method of the AC motor drive:
0 : (IM V/f control): user can design proportion of V / f as required and can control multiple motors simultaneously.
1: (IM V/f control + Encoder): user can use optional PG card with encoder for the closed-loop speed control.

2: (IM Sensorless vector control): get the optimal control by the auto-tuning of motor parameters.
3: (IM FOC vector control+ encoder): besides torque increases, the speed control will be more accurate (1:1000).
6: PM Sensorless (PM field oriented sensorless vector control)

When setting Pr.00-11 to 0 , the V/F control diagram is shown as follows.

1 When setting Pr.00-11 to 1 , the V/F control + encoder diagram is shown as follows.

1 When setting Pr.00-11 to 2 , the sensorless vector control diagram is shown as follows.
When setting Pr.00-11 to 3, the FOCPG control diagram is shown as follows.

1 When setting Pr.00-11 to 6, PM FOC sensorless control diagram is shown as follows:

98-9 Control of Torque Mode

Factory Setting: 0
Settings
0: TQCPG (IM Torque control + Encoder)
1~2: Reserved
Iad TQCPG control diagram is shown in the following:

Reserved

Reserved

58-: 5
 Load Selection

Factory Setting: 0
Settings 0: Normal load
1: Heavy load
Ind Normal duty: over load, rated output current 160\% in 3 second. Please refer to Pr.00-17 for the setting of carrier wave. Refer to chapter specifications or Pr.00-01 for the rated current.

Heavy duty: over load, rated output current 180\% in 3 second. Please refer to Pr.00-17 for the setting of carrier wave. Refer to chapter specifications or Pr.00-01 for the rated current.

79-17 Carrier Frequency

Factory setting: Table below
Settings $2 \sim 15 \mathrm{kHz}$

1. This parameter determinates the PWM carrier frequency of the AC motor drive.

	230 V Series	
Models	1-Phase $0.4-2.2 \mathrm{~kW}$	$3-$-Phase $0.4-3.7 \mathrm{~kW}$
3-Phase $0.75-7.5 \mathrm{~kW}$		
Setting Range	$02 \sim 15 \mathrm{kHz}$	$02 \sim 15 \mathrm{kHz}$
Normal Duty Factory Setting	8 kHz	8 kHz
Heavy Duty Factory Setting	2 kHz	2 kHz

Carrier Frequency	Acoustic Noise	Electromagnetic Noise or Leakage Current	Heat Dissipation	Current Wave
1 kHz				$\begin{aligned} & M N A \\ & W N+ \end{aligned}$
8 kHz				
15 kHz				

(10) From the table, we see that the PWM carrier frequency has a significant influence on the electromagnetic noise, $A C$ motor drive heat dissipation, and motor acoustic noise. Therefore, if the surrounding noise is greater than the motor noise, lower the carrier frequency is good to reduce the temperature rise. Although it is quiet operation in the higher carrier frequency, the entire wiring and interference resistance should be considerate.
[1] When the carrier frequency is higher than the factory setting, it needs to protect by decreasing the carrier frequency. See Pr.06-55 for the related setting and details.

58-98
 Single or Three-phase setting

Factory Setting: Read Only
Settings 0:3-phase
1: 1-phase
When Pr. $00-00=2,00-18=0: 230 \mathrm{~V}, 0.4 \mathrm{~kW}, 3-$ Phase
Pr.00-00=2, 00-18=1:230V, 0.4kW, 1-Phase
Pr.00-00=4, 00-18=0:230V, $0.75 \mathrm{~kW}, 3-$ Phase
Pr. $00-00=4,00-18=1: 230 \mathrm{~V}, 0.75 \mathrm{~kW}, 1-\mathrm{Ph}$ ase
Pr.00-00=5, 00-18=0: 460V, 0.75kW
Pr.00-00=6, 00-18=0 : 230V, 1.5kW, 3-Phase
Pr. $00-00=6,00-18=1: 230 \mathrm{~V}, 1.5 \mathrm{~kW}, 1$-Phase
Pr. $00-00=7,00-18=0: 460 \mathrm{~V}, 1.5 \mathrm{~kW}$
Pr.00-00=8, 00-18=0 : 230V, 2.2kW, 3-Phase
Pr. $00-00=8,00-18=1: 230 \mathrm{~V}, 2.2 \mathrm{~kW}, 1-\mathrm{Phase}$
Pr.00-00=9, 00-18=0: 460V, 2.2kW
Pr.00-00=10, 00-18=0:230V, 3.7kW, 3-Phase
Pr.00-00=11, 00-18=0:460V, 3.7 kW
Pr.00-00=13, 00-18=0:230V, 5.5 kW
Pr.00-00=15, 00-18=0 : 460V, 7.5kW
Pr.00-00=93, 00-18=0: 460V, 4.0kW

Settings Bit 0: Control command by PLC force control
Bit 1: Frequency command by PLC force control
This parameter determines if frequency command or control command is occupied by PLC

日8－2日

Source of the Master Frequency Command（AUTO）
Factory Setting： 0
Settings 0：Digital keypad
1：RS－485 serial communication
2：External analog input（Pr．03－00）
3：External UP／DOWN terminal
4～5：Reserved
6：CANopen communication card
7：Digital keypad potentiometer
Ill It is used to set the source of the master frequency in AUTO mode．
IL．Pr．00－20 and 00－21 are for the settings of frequency source and operation source in AUTO mode． Pr．00－30 and 00－31 are for the settings of frequency source and operation source in HAND mode． The AUTO／HAND mode can be switched by the keypad KPC－CC01 or multi－function input terminal （MI）．
1 The factory setting of frequency source or operation source is for AUTO mode．It will return to AUTO mode whenever power on again after power off．If there is multi－function input terminal used to switch AUTO／HAND mode．The highest priority is the mutli－function input terminal．When the external terminal is OFF，the drive won＇t receive any operation signal and can＇t execute JOG．

日品－2 Source of the Operation Command（AUTO）

Factory Setting： 0

> | Settings | 0: Digital keypad |
| :--- | :--- |
| 1: External terminals. Keypad STOP disabled. | |
| 2: RS-485 serial communication. Keypad STOP disabled. | |
| 3: CANopen communication | |

It is used to set the source of the operation frequency in AUTO mode．
lad When the operation command is controlled by the keypad KPC－CC01，keys RUN，STOP and JOG （F1）are valid．

Factory Setting： 0
Settings 0：Ramp to stop
1：Coast to stop
The parameter determines how the motor is stopped when the AC motor drive receives a valid stop command．

Rampto Stop and Coast to Stop
(1)d Ramp to stop: the AC motor drive decelerates from the setting of deceleration time to or minimum output frequency (Pr. 01-09) and then stop (by Pr.01-07).
(1) Coast to stop: the AC motor drive stops the output instantly upon a STOP command and the motor free runs until it comes to a complete standstill.
(1) It is recommended to use "ramp to stop" for safety of personnel or to prevent material from being wasted in applications where the motor has to stop after the drive is stopped. The deceleration time has to be set accordingly.
(2) If the motor free running is allowed or the load inertia is large, it is recommended to select "coast to stop". For example, blowers, punching machines and pumps
[D] The stop method of the torque control is also set by Pr.00-22.

EAE-23 Control of Motor Direction

Factory Setting: 0

Settings	$0:$ Enable forward/reverse
	1: Disable reverse
	2: Disable forward

[1] This parameter enables the AC motor drives to run in the forward/reverse Direction. It may be used to prevent a motor from running in a direction that would consequently injure the user or damage the equipment.

Memory of Frequency Command
Factory Setting: Read Only
Settings Read only
[1] If keypad is the source of frequency command, when Lv or Fault occurs the present frequency command will be saved in this parameter.

日8-25

User Defined Characteristics
Factory Setting: 0

Settings	Bit 0~3: user define on decim 0000b: no decimal place
0001b: one decimal place	
0010b: two decimal place	
0011b: three decimal place	

Bit 4~15: user define on unit
000xh: Hz
001xh: rpm
002xh: \%
003xh: kg
[a] Bit 0~3: F \& H page unit and Pr.00-26 decimal display is supported up to 3 decimal places.
(1) Bit 4~15: F\&H page unit and Pr.00-26 unit display is supported up to 4 types of unit display.

99-96 Max. User Defined Value

Factory Setting: 0
Settings 0: Disable
0~65535 (when Pr.00-25 set to no decimal place)
$0.0 \sim 6553.5$ (when Pr.00-25 set to 1 decimal place)
0.0~655.35 (when Pr.00-25 set to 2 decimal place)
$0.0 \sim 65.535$ (when Pr.00-25 set to 3 decimal place)
[1] User define is enabled when Pr.00-26 is not 0 . The setting of Pr.00-26 corresponds to Pr. 01.00 (Max. output frequency of the drive).
Example: User define: 100.0%, Pr. $01-00=60.00 \mathrm{~Hz}$
Pr.00-25 setting is 0021 h ; Pr.00-26 setting is 100.0%

NOTE

The drive will display as Pr.00-25 setting when Pr.00-25 is properly set and Pr.00-26 is not 0 .

93-27

User Defined Value
Factory Setting: Read only
Settings Read only
[a] Pr.00-27 will show user defined value when Pr.00-26 is not set to 0 .
\llbracket User defined function is valid when Pr.00-20 is set to digital keypad control or RS-285 communication input control.

Reserved

Factory Setting: 0

Settings	0: Standard HOA function
1: Switching Local/Remote, the drive stops	
2: Switching Local/Remote, the drive runs as the REMOTE setting for	
frequency and operation status	
3: Switching Local/Remote, the drive runs as the LOCAL setting for frequency	
and operation status	
4: Switching Local/Remote, the drive runs as LOCAL setting when switch to	
Local and runs as REMOTE setting when switch to Remote for frequency	
and operation status.	

[1] The factory setting of Pr.00-29 is 0 (standard Hand-Off-Auto function). The AUTO frequency and source of operation can be set by Pr.00-20 and Pr.00-21, and the HAND frequency and source of operation can be set by Pr.00-30 and Pr.00-31. AUTO/HAND mode can be selected or switched by using digital keypad (KPC-CC01) or setting multi-function input terminal MI=41, 42.

When external terminal MI is set to 41 and 42 (AUTO/HAND mode), the settings Pr.00-29=1, 2, 3, 4 will be disabled. The external terminal has the highest priority among all command, Pr.00-29 will always function as Pr.00-29=0, standard HOA mode.
When Pr.00-29 is not set to 0 , Local/Remote function is enabled, the top right corner of digital keypad (KPC-CC01) will display "LOC" or "REM" (the display is available when KPC-CC01 is installed with firmware version higher than version 1.021). The LOCAL frequency and source of operation can be set by Pr.00-20 and Pr.00-21, and the REMOTE frequency and source of operation can be set by Pr.00-30 and Pr.00-31. Local/Remote function can be selected or switched by using digital keypad(KPC-CC01) or setting external terminal MI=56. The AUTO key of the digital keypad now controls for the REMOTE function and HAND key now controls for the LOCAL function.

When MI is set to 56 for LOC/REM selection, if Pr.00-29 is set to 0 , then the external terminal is disabled.
1 When MI is set to 56 for LOC/REM selection, if Pr.00-29 is not set to 0 , the external terminal has the highest priority of command and the ATUO/HAND keys will be disabled.

Source of the Master Frequency Command (HAND)
Factory Setting: 0
Settings 0: Digital keypad
1: RS-485 serial communication
2: External analog input (Pr.03-00)
3: External UP/DOWN terminal
4~5: Reserved
5: Pulse input with direction command (Pr.10-16)
6: CANopen communication
7: Digital keypad potentiometer
Ill It is used to set the source of the master frequency in HAND mode.
78-3 ! Source of the Operation Command (HAND)
Factory Setting: 0
Settings 0: Digital keypad
1: External terminals. Keypad STOP disabled.
2: RS-485 serial communication. Keypad STOP disabled.
3: CANopen communication
It is used to set the source of the operation frequency in HAND mode.
[10] Pr.00-20 and 00-21 are for the settings of frequency source and operation source in AUTO mode. Pr.00-30 and 00-31 are for the settings of frequency source and operation source in HAND mode. The AUTO/HAND mode can be switched by the keypad KPC-CC01 or multi-function input terminal (MI).
[10] The factory setting of frequency source or operation source is for AUTO mode. It will return to AUTO mode whenever power on again after power off. If there is multi-function input terminal used to switch AUTO/HAND mode. The highest priority is the multi-function input terminal. When the
external terminal is OFF, the drive won't receive any operation signal and can't execute JOG.

97-3I Digital Keypad STOP Function

Factory Setting: 0
Settings 0: STOP key disable 1: STOP key enable

60-33

~ Reserved

明-47

Factory Settings: 0.100
Settings: $0.001 \sim 65.535 \mathrm{sec}$
Eet this parameter to minimize the current fluctuation displayed by digital keypad.

99-43 Display Filter Time (Keypad)

Factory Settings: 0.100
Settings: $0.001 \sim 65.535 \mathrm{sec}$Set this parameter to minimize the display value fluctuation displayed by digital keypad.

Settings: Read only
\square This parameter displays the drive's software version by date.

Group 1 Basic Parameters

\wedge This parameter can be set during operation.

Maximum Output Frequency
Factory Setting: 60.00/50.00
Settings $50.00 \sim 600.00 \mathrm{~Hz}$
@ This parameter determines the AC motor drive's Maximum Output Frequency. All the AC motor drive frequency command sources (analog inputs 0 to $+10 \mathrm{~V}, 4$ to $20 \mathrm{~mA}, 0$ to 20 mA and $\pm 10 \mathrm{~V}$) are scaled to correspond to the output frequency range.

Output Frequency of Motor 1 (base frequency and motor rated frequency)
Output Frequency of Motor 2 (base frequency and motor rated frequency)
Factory Setting: 60.00/50.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$
[10. This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. If the motor is 60 Hz , the setting should be 60 Hz . If the motor is 50 Hz , it should be set to 50 Hz .
1 Pr.01-35 is used for the application occasion that uses double base motor.

Output Voltage of Motor 1 (base frequency and motor rated frequency)
Output Voltage of Motor 2 (base frequency and motor rated frequency)
Factory Setting: 200.0/400.0
Settings 230V series: $0.0 \sim 255.0 \mathrm{~V}$
460 V series: $0.0 \sim 510.0 \mathrm{~V}$
1 This value should be set according to the rated voltage of the motor as indicated on the motor nameplate. If the motor is 220 V , the setting should be 220.0 . If the motor is 200 V , it should be set to 200.0.

1 There are many motor types in the market and the power system for each country is also difference. The economic and convenience method to solve this problem is to install the AC motor drive. There is no problem to use with the different voltage and frequency and also can amplify the original characteristic and life of the motor.

7: 93
 Mid-point Frequency 1 of Motor 1

Factory Setting: 3.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$

Mid-point Voltage 1 of Motor 1
Factory Setting: 11.0/22.0
Settings 230 V series: $0.0 \sim 240.0 \mathrm{~V}$
460 V series: $0.0 \sim 480.0 \mathrm{~V}$

Mid-point Frequency 1 of Motor 2
Factory Setting: 3.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$

(4)-38

Mid-point Voltage 1 of Motor 2
Factory Setting: 11.0/22.0
Settings 230 V series: $0.0 \sim 240.0 \mathrm{~V}$
460 V series: $0.0 \sim 480.0 \mathrm{~V}$

19:85

Mid-point Frequency 2 of Motor 1
Factory Setting: 0.50
Settings $0.00 \sim 600.00 \mathrm{~Hz}$

Mid-point Voltage 2 of Motor 1
Factory Setting: 2.0/4.0
Settings 230 V series: $0.0 \sim 240.0 \mathrm{~V}$
460 V series: $0.0 \sim 480.0 \mathrm{~V}$

[7:-38

Mid-point Frequency 2 of Motor 2
Factory Setting: 0.50
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
7: 48
Mid-point Voltage 2 of Motor 2
Factory Setting: 2.0/4.0
Settings 230V series: 0.0~240.0V
460 V series: $0.0 \sim 480.0 \mathrm{~V}$

17: 17 Min. Output Frequency of Motor 1
Factory Setting: 0.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$
5: 88
Min. Output Voltage of Motor 1
Factory Setting: 0.0/0.0
Settings 230V series: 0.0~240.0V
460 V series: $0.0 \sim 480.0 \mathrm{~V}$

Bi-4i
 Min. Output Frequency of Motor 2

Factory Setting: 0.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$
Bi-4?
Min. Output Voltage of Motor 2
Factory Setting: 0.0/0.0
Settings 230 V series: $0.0 \sim 240.0 \mathrm{~V}$
460 V series: $0.0 \sim 480.0 \mathrm{~V}$
\square V/f curve setting is usually set by the motor's allowable loading characteristics. Pay special attention to the motor's heat dissipation, dynamic balance, and bearing lubricity, if the loading characteristics exceed the loading limit of the motor.
1 There is no limit for the voltage setting, but a high voltage at low frequency may cause motor damage, overheat, and stall prevention or over-current protection. Therefore, please use the low
voltage at the low frequency to prevent motor damage.
[1] Pr.01-35 to Pr.01-42 is the V/f curve for the motor 2. When multi-function input terminals Pr.02-01~02-08 and Pr.02-26 ~Pr.02-31 are set to 14 and enabled, the AC motor drive will act as the 2nd V/f curve.

Lad The V/f curve for the motor 1 is shown as follows. The V/f curve for the motor 2 can be deduced from it.

V/f Curve
Common settings of V/f curve:
(1) General purpose

Motor spec. 60 Hz

Motor spec. 50 Hz

\checkmark A		
220	Pr.	Setting
-	01-00	50.0
	01-01	50.0
	01-02	220.0
	$\begin{aligned} & 01-03 \\ & 01-05 \end{aligned}$	1.30
10	$\begin{aligned} & \text { 01-04 } \\ & 01-06 \end{aligned}$	12.0
1.3 50.0 F	01-07	1.30
	01-08	12.0

(2) Fan and hydraulic machinery

Motor spec. 60 Hz

Motor spec. 50 Hz

Pr.	Setting
$01-00$	50.0
$01-01$	50.0
$01-02$	220.0
$01-03$	25.0
$01-05$	
$01-04$	50.0
$01-06$	
$01-07$	1.30
$01-08$	10.0

(3) High starting torque

Motor spec. 60 Hz
Motor spec. 50 Hz

Pr.	Setting
$01-00$	60.0
$01-01$	60.0
$01-02$	220.0
$01-03$	3.00
$01-05$	
$01-04$	23.0
$01-06$	
$01-07$	1.50
$01-08$	18.0

Pr.	Setting
$01-00$	50.0
$01-01$	50.0
$01-02$	220.0
$01-03$	2.20
$01-05$	
$01-04$	23.0
$01-06$	
$01-07$	1.30
$01-08$	14.0

19: 98
 Start-Up Frequency

Factory Setting: 0.50

Settings $0.0 \sim 600.00 \mathrm{~Hz}$

[1] When start frequency is higher than the min. output frequency, drives' output will be from start frequency to the setting frequency. Please refer to the following diagram for details.Fcmd=frequency command,
Fstart=start frequency (Pr.01-09),
fstart=actual start frequency of drive,
Fmin=4th output frequency setting (Pr.01-07/Pr.01-41),
Flow=output frequency lower limit (Pr.01-11)

Factory Setting: 0.00
Settings $0.0 \sim 600.00 \mathrm{~Hz}$
1 The upper/lower output frequency setting is used to limit the actual output frequency. If the frequency setting is higher than the upper limit, it will run with the upper limit frequency. If output frequency lower than output frequency lower limit and frequency setting is higher than min. frequency, it will run with lower limit frequency. The upper limit frequency should be set to be higher than the lower limit frequency.
(1) Pr.01-10 setting must be \geq Pr.01-11 setting. Pr.01-00 setting is regarded as 100.0%.
[1] Output frequency upper limit $=($ Pr. $01-00 \times$ Pr.01-10 $) / 100$
1 This setting will limit the max. Output frequency of drive. If frequency setting is higher than Pr.01-10, the output frequency will be limited by Pr.01-10 setting.
1 When the drive starts the function of slip compensation (Pr.07-27) or PID feedback control, drive output frequency may exceed frequency command but still be limited by this setting.

1 Related parameters: Pr.01-00 Max. Operation Frequency and Pr.01-11 Output Frequency Lower Limit

10 This setting will limit the min. output frequency of drive. When drive frequency command or feedback control frequency is lower than this setting, drive output frequency will limit by the lower limit of frequency.
1 When the drive starts, it will operate from min. output frequency (Pr.01-05) and accelerate to the setting frequency. It won't limit by this parameter setting.

1 The setting of output frequency upper/lower limit is used to prevent personal disoperation, overheat due to too low operation frequency or damage due to too high speed.
If If the output frequency upper limit setting is 50 Hz and frequency setting is 60 Hz , max. output frequency will be 50 Hz .
[1] If the output frequency lower limit setting is 10 Hz and min. operation frequency setting (Pr.01-05) is 1.5 Hz , it will operate by 10 Hz when the frequency command is greater than Pr.01-05 and less than 10 Hz . If the frequency command is less than Pr.01-05, the drive will be in ready status and no output.

If the frequency output upper limit is 60 Hz and frequency setting is also 60 Hz , it won't exceed 60 Hz even after slip compensation. If the output frequency needs to exceed 60 Hz , it can increase output frequency upper limit or max. operation frequency.

Accel. Time 1

Decel. Time 1
Accel. Time 2
Decel. Time 2
Accel. Time 3
Decel. Time 3
Accel. Time 4
Decel. Time 4
JOG Acceleration Time
JOG Deceleration Time
Factory Setting: 10.00/10.0

$$
\begin{array}{ll}
\text { Settings } & \text { Pr. } 01-45=0: 0.00 \sim 600.00 \text { seconds } \\
& \text { Pr. } 01-45=1: 0.00 \sim 6000.00 \text { seconds }
\end{array}
$$

[a] The Acceleration Time is used to determine the time required for the AC motor drive to ramp from 0 Hz to Maximum Output Frequency (Pr.01-00).
[1] The Deceleration Time is used to determine the time require for the AC motor drive to decelerate from the Maximum Output Frequency (Pr.01-00) down to 0 Hz .
凹ad The Acceleration/Deceleration Time is invalid when using Pr.01-44 Optimal Acceleration/Deceleration Setting.
[id The Acceleration/Deceleration Time 1, 2, 3, 4 are selected according to the Multi-function Input Terminals settings. The factory settings are Accel./Decel. time 1.
1 When enabling torque limits and stalls prevention function, actual accel./decel. time will be longer than the above action time.

1 Please note that it may trigger the protection function (Pr.06-03 Over-current Stall Prevention during Acceleration or Pr.06-01 Over-voltage Stall Prevention) when the setting of accel./decel. time is too short.

1 Please note that it may cause motor damage or drive protection enabled due to over current during acceleration when the setting of acceleration time is too short.

1 Please note that it may cause motor damage or drive protection enabled due to over current during deceleration or over-voltage when the setting of deceleration time is too short.
11 It can use suitable brake resistor (see Chapter 07 Accessories) to decelerate in a short time and prevent over-voltage.
1 When enabling Pr.01-24~Pr.01-27, the actual accel./decel. time will be longer than the setting.

11 $1-3$
 JOG Frequency

Factory Setting: 6.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$
[a] Both external terminal JOG and key "F1" on the keypad KPC-CC01 can be used. When the jog command is ON, the AC motor drive will accelerate from 0 Hz to jog frequency (Pr.01-22). When the jog command is OFF, the AC motor drive will decelerate from Jog Frequency to zero. The Jog Accel./Decel. time (Pr.01-20, Pr.01-21) is the time that accelerates from 0.0Hz to Pr.01-22 JOG Frequency.
11 The JOG command can't be executed when the AC motor drive is running. In the same way, when the JOG command is executing, other operation commands are invalid except forward/reverse commands and STOP key on the digital keypad.
It does not support JOG function in the optional keypad KPC-CE01.

[1-2 3 1st/4th Accel./decel. Frequency

Factory Setting: 0.00

Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$

The transition from acceleration/deceleration time 1 to acceleration/deceleration time 4, may also be enabled by the external terminals. The external terminal has priority over Pr. 01-23.

Factory Setting: 0.20/0.2
$\begin{array}{ll}\text { Settings } & \text { Pr.01-45=0: 0.00~25.00 seconds } \\ & \text { Pr.01-45=1: } 0.00 \sim 250.0 \text { seconds }\end{array}$
ILd It is used to give the smoothest transition between speed changes. The accel./decel. curve can adjust the S-curve of the accel./decel. When it is enabled, the drive will have different accel./decel. curve by the accel./decel. time.
[1] The S-curve function is disabled when accel./decel. time is set to 0 .
\square When Pr.01-12, 01-14, 01-16, 01-18 \geq Pr.01-24 and Pr.01-25,
The Actual Accel. Time $=$ Pr.01-12, 01-14, 01-16, 01-18 + (Pr.01-24 + Pr.01-25)/2
$[$ When Pr.01-13, 01-15, 01-17, 01-19 \geq Pr.01-26 and Pr.01-27,
The Actual Decel. Time $=$ Pr.01-13, 01-15, 01-17, 01-19 + (Pr.01-26 + Pr.01-27)/2
Frequency
Skip Frequency 1 (upper limit)
Skip Frequency 1 (lower limit)
Skip Frequency 2 (upper limit)
Skip Frequency 2 (lower limit)
Skip Frequency 3 (upper limit)
Skip Frequency 3 (lower limit)
Factory Setting: 0.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$
1 These parameters are used to set the skip frequency of the AC drive. But the frequency output is continuous. There is no limit for the setting of these six parameters and can be used as required.
[1] The skip frequencies are useful when a motor has vibration at a specific frequency bandwidth. By skipping this frequency, the vibration will be avoided. It offers 3 zones for use.
1 These parameters are used to set the skip frequency of the AC drive. But the frequency output is continuous. The limit of these six parameters is $01-28 \geq 01-29 \geq 01-30 \geq 01-31 \geq 01-32 \geq 01-33$. This function will be invalid when setting to 0.0 .
1 The setting of frequency command (F) can be set within the range of skip frequencies. In this moment, the output frequency (H) will be limited by these settings.When accelerating/decelerating, the output frequency will still pass the range of skip frequencies.

7:-34 Zero-speed Mode

Factory Setting: 0
Settings 0: Output waiting
1: Zero-speed operation
2: $\operatorname{Fmin}\left(4^{\text {th }}\right.$ output frequency setting)
1 When the frequency is less than Fmin (Pr.01-07 or Pr.01-41), it will operate by this parameter.When it is set to 0 , the $A C$ motor drive will be in waiting mode without voltage output from terminals U/V/W.

1 When setting 1, it will execute DC brake by Vmin. (Pr.01-08 and Pr.01-42) in V/f, VFPG and SVC modes. It executes zero-speed operation in VFPG and FOCPG mode.When it is set to 2, the AC motor drive will run by Fmin (Pr.01-07, Pr.01-41) and Vmin (Pr.01-08, Pr.01-42) in V/f, VFPG, SVC and FOCPG modes.
In V/f, VFPG and SVC modes

1 In FOCPG mode, when Pr.01-34 is set to 2 , it will act according Pr.01-34 setting.

A: 3 V/f Curve Selection

Factory Setting: 0
Settings 0 : V/f curve determined by group 01
1: 1.5 power curve
2: Square curve

When setting to 0, refer to Pr.01-01~01-08 for motor $1 \mathrm{~V} / \mathrm{f}$ curve. For motor 2, please refer to Pr.01-35~01-42.When setting to 1 or $2,2^{\text {nd }}$ and $3^{\text {rd }}$ voltage frequency setting are invalid.
Ind If motor load is variable torque load (torque is in direct proportion to speed, such as the load of fan or pump), it can decrease input voltage to reduce flux loss and iron loss of the motor at low speed with low load torque to raise the entire efficiency.
$[1]$
When setting higher power V / f curve, it is lower torque at low frequency and is not suitable for rapid acceleration/deceleration. It is recommended Not to use this parameter for the rapid acceleration/deceleration.

Factory Setting: 0
Settings 0: Linear accel./decel.
1: Auto accel., linear decel.
2: Linear accel., auto decel.
3: Auto accel./decel. (auto calculate the accel./decel. time by actual load)
4: Stall prevention by auto accel./decel. (limited by 01-12 to 01-21)
1 Pr.01-44 is used to reduce the drive's vibration during load starts and stops. Also it will speed up to the setting frequency with the fastest and smoothest start-up current when it detects small torque. At deceleration, it will auto stop the drive with the fastest and the smoothest deceleration time when the regenerated voltage of the load is detected.
10 Setting 0 Linear accel./decel.: it will accelerate/decelerate according to the setting of Pr.01-12~01-19.
10 Setting to Auto accel./decel.: it can reduce the mechanical vibration and prevent the complicated auto-tuning processes. It won't stall during acceleration and no need to use brake resistor. In addition, it can improve the operation efficiency and save energy.
Setting 3 Auto accel./decel. (auto calculate the accel./decel. time by actual load): it can auto detect the load torque and accelerate from the fastest acceleration time and smoothest start current to the setting frequency. In the deceleration, it can auto detect the load re-generation and stop the motor smoothly with the fastest decel. time.
Setting 4 Stall prevention by auto accel./decel. (limited by 01-12 to 01-21): if the acceleration/deceleration is in the reasonable range, it will accelerate/decelerate by

Pr.01-12~01-19. If the accel./decel. time is too short, the actual accel./decel. time is greater than the setting of accel./decel. time.

5: - 45 Time Unit for Acceleration/Deceleration and S Curve
Factory Setting: 0
Settings 0 : Unit 0.01 sec
1: Unit 0.1 sec

Factory Setting: 1.00
Settings Pr. 01-45=0: 0.00~600.00 sec
Pr. 01-45=1: 0.0~6000.0 sec
1 It is used to set the time that decelerates from the max. operation frequency (Pr.01-00) to 0.00 Hz in
CANopen control

02 Digital Input/Output Parameter

\mathcal{N} This parameter can be set during operation.

日2-9日

2-wire/3-wire Operation Control
Factory Setting: 0
Settings $0: 2$ wire mode 1
1: 2 wire mode 2
2: 3 wire mode
It It is used to set the operation control method:

Pr.02-00	Control Circuits of the External Terminal	
0 2-wire mode 1 FWD/STOP REV/STOP	$\begin{aligned} & \text { FWD/STOP } \\ & \text { REV/STOP. } \overline{00-} \end{aligned}$	FWD:("OPEN":STOP) ("CLOSE":FWD) REV:("OPEN": STOP) дсм ("CLOSE": REV) VFD-Cx
1 2-wire mode 2 RUN/STOP REV/FWD		
3 3 -wire operation control		FWD "CLOSE":RUN MI1 "OPEN":STOP REV/FWD "OPEN": FWD "CLOSE": REV DCM

Multi-function Input Command 1 (MI1) (MI1 = STOP command when in 3-wire operation control)

Factory Setting: 1

Multi-function Input Command 2 (MI2)
Factory Setting: 2

Multi-function Input Command 3 (MI3)
Factory Setting: 3
Multi-function Input Command 4 (MI4)
Factory Setting: 4
Multi-function Input Command 5 (MI5)
Multi-function Input Command 6 (MI6)
Multi-function Input Command 7 (MI7)
Multi-function Input Command 8 (MI8)
Factory Setting: 0

Settings

0: no function
1: multi-step speed command $1 /$ multi-step position command 1
2: multi-step speed command 2 /multi-step position command 2
3 : multi-step speed command $3 /$ multi-step position command 3

4: multi-step speed command 4/multi-step position command 4
5: Reset
6: JOG command (By KPC-CC01 or external control)
7: acceleration/deceleration speed not allow
8: the $1^{\text {st }}, 2^{\text {nd }}$ acceleration/deceleration time selection
9: the $3^{\text {rd }}, 4^{\text {th }}$ acceleration/deceleration time selection
10: EF Input (Pr.07-20)
11: B.B input from external (Base Block)
12: Output stop
13: cancel the setting of the optimal acceleration/deceleration time
14: switch between motor 1 and motor 2
15: operation speed command from AVI
16: operation speed command from ACl
17: operation speed command from AUI
18: Emergency stop (Pr.07-20)
19: Digital up command
20: Digital down command
21: PID function disabled
22: Clear counter
23: Input the counter value (MI6)
24: FWD JOG command
25: REV JOG command
26: FOCG/TQC model selection
27: ASR1/ASR2 selection
28: Emergency stop (EF1)
29: Signal confirmation for Y-connection
30: Signal confirmation for Δ-connection
31: High torque bias (Pr.11-30)
32: Middle torque bias (Pr.11-31)
33: Low torque bias (Pr.11-32)
34: Switch between multi-step position and multi-speed control
35: Enable position control
36: Enable multi-step position learning function (valid at stop)
37: Enable pulse position input command
38: Disable write EEPROM function
39: Torque command direction
40: Force coast to stop
41: HAND switch
42: AUTO switch
43~47: Reserved
48: Mechanical gear ratio switch
49: Drive enable
50: Master dEb action input
51: Selection for PLC mode bit0
52: Selection for PLC mode bit1
53: Trigger CANopen quick stop
54~55: Reserved
56: Local/Remote Selection
$110]$ This parameter selects the functions for each multi-function terminal.
[1] The terminals of Pr.02-26~Pr.02-29 are virtual and set as MI10~MI13 when using with optional card EMC-D42A. Pr.02-30~02-31 are virtual terminals.

1 When being used as a virtual terminal, it needs to change the status (0/1: ON/OFF) of bit 8-15 of Pr.02-12 by digital keypad KPC-CC01 or communication.
1 If Pr.02-00 is set to 3 -wire operation control. Terminal MI1 is for STOP contact. Therefore, MI1 is not allowed for any other operation.
$1 \mathbb{1}$ Summary of function settings (Take the normally open contact for example, ON: contact is closed,

OFF: contact is open)

Settings	Functions	Descriptions			
		second group A2/B2 (refer to Pr.10-08 and Pr.10-09).			
49	Drive enable	When drive=enable, RUN command is valid. When drive= disable, RUN command is invalid. When drive is in operation, motor coast to stop.			
50	Master dEb action input	Input the message setting in this parameter when dEb occurs to Master. This will ensure dEb also occurs to Slave, then Master and Slave will stop simultaneously.			
51	Selection for PLC mode bit0	PLC status		Bit 1	Bit 0
		Disable PLC function (PLC 0)		0	0
		Trigger PLC to operation (PLC 1)		0	1
52	Selection for PLC mode bit1	Trigger PLC to stop (PLC 2)		1	0
		No function		1	1
53	Enable CANopen quick stop	When this function is enabled under CANopen control, it will change to quick stop. Refer to Chapter 15 for more details.			
54~55	Reserved				
56	LOCAL/REMOTE Selection	Use Pr.00-29 to select for LOCAL/REMOTE mode(refer to Pr.00-29) When Pr.00-29 is not set to 0 , on the digital keypad KPC-CC01 it will display LOC/REM status. (It will display on the KPC-CC01 if the firmware version is above version 1.021).			
			Bit 0		
		REM	0		
		LOC	1		

日2-83
 UP/DOWN Key Mode

Factory Setting: 0
Settings 0: Up/down by the accel/decel time
1: Up/down constant speed (Pr.02-10)

82-19

Constant speed. The Accel. /Decel. Speed of the UP/DOWN Key
Factory Setting: 0.01
Settings $0.01 \sim 1.00 \mathrm{~Hz} / \mathrm{ms}$
[1] These settings are used when multi-function input terminals are set to 19/20. Refer to Pr.02-09 and 02-10 for the frequency up/down command.
1 Pr.02-09 set to 0 : it will increase/decrease frequency command (F) by the external terminal UP/DOWN key as shown in the following diagram. In this mode, it also can be controlled by UP/DOWN key on the digital keypad.

[1] Pr.02-09 set to 1: it will increase/decrease frequency command (F) by the setting of acceleration/deceleration (Pr.01-12~01-19) and only be valid during operation.

Multi-function
input terminal 10 Frequency increased command

Frequency

ME - !

Factory Setting: 0.005
Settings $0.000 \sim 30.000 \mathrm{sec}$
1 This parameter is used to set the response time of digital input terminals FWD, REV and MI1~MI8.
It It is used for digital input terminal signal delay and confirmation. The delay time is confirmation time to prevent some uncertain interference that would cause error in the input of the digital terminals. Under this condition, confirmation for this parameter would improve effectively, but the response time will be somewhat delayed.

Factory Setting: 0000h
Settings 0000h~FFFFh (0:N.O. ; 1:N.C.)
$10]$ The setting of this parameter is In hexadecimal.
This parameter is used to set the input signal level and it won't be affected by the SINK/SOURCE status.Bit0 is for FWD terminal, bit1 is for REV terminal and bit2 to bit15 is for MI1 to MI14.
[1] User can change terminal status by communicating.
For example, MI1 is set to 1 (multi-step speed command 1), MI2 is set to 2 (multi-step speed command 2). Then the forward $+2^{\text {nd }}$ step speed command=1001(binary) $=9$ (Decimal). Only need to set Pr.02-12=9 by communication and it can forward with $2^{\text {nd }}$ step speed. It doesn't need to wire any multi-function terminal.

bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
MI8	MI7	MI6	MI5	MI4	MI3	MI2	MI1	REV	FWD

Rコ- ! 3 Multi-function Output 1 (Relay1)
Factory Setting: 11

Me - : 4 Multi-function Output 2 (Relay2)

Factory Setting: 1

Multi-function Output 3 (MO1) When Pr02-21 =0, this parameter is enabled.
Multi-function Output 4 (MO2) When Pr02-55 $=0$, this parameter is enabled.
Factory Setting: 0
Settings
0 : No function
1: Operation Indication

2: Operation speed attained
3: Desired frequency attained 1 (Pr.02-22)
4: Desired frequency attained 2 (Pr.02-24)
5: Zero speed (Frequency command)
6: Zero speed, include STOP(Frequency command)
7: Over torque 1(Pr.06-06~06-08)
8: Over torque 2(Pr.06-09~06-11)
9: Drive is ready
10: Low voltage warning (LV) (Pr.06-00)
11: Malfunction indication
12: Mechanical brake release(Pr.02-32)
13: Overheat warning (Pr.06-15)
14: Software brake signal indication(Pr.07-00)
15: PID feedback error
16: Slip error (oSL)
17: Terminal count value attained (Pr.02-20; not return to 0)
18: Preliminary count value attained (Pr.02-19; returns to 0)
19: Base Block
20: Warning output
21: Over voltage warning
22: Over-current stall prevention warning
23: Over-voltage stall prevention warning
24: Operation mode indication
25: Forward command
26: Reverse command
27: Output when current $>=$ Pr.02-33 ($>=02-33$)
28: Output when current $<=$ Pr.02-33 (<= 02-33)
29: Output when frequency $>=$ Pr.02-34 ($>=02-34$)
30: Output when frequency <= Pr.02-34 (<= 02-34)
31: Y-connection for the motor coil
32: \triangle-connection for the motor coil
33: Zero speed (actual output frequency)
34: Zero speed include stop(actual output frequency)
35: Error output selection 1(Pr.06-23)
36: Error output selection 2(Pr.06-24)
37: Error output selection 3(Pr.06-25)
38: Error output selection 4(Pr.06-26)
39: Reserved
40: Speed attained (including Stop)
41: Reserved
42: Crane function
43: Actual motor speed slower than Pr.02-47

44: Low current output (Pr.06-71 to Pr.06-73)
45: Reserved
46: Master dEb action output
47: Closed brake output
48~49: Reserved
50: Output for CANopen control
51: Output for RS-485
Ild This parameter is used for setting the function of multi-function terminals.
Ild Summary of function settings (Take the normally open contact for example, ON: contact is closed,
OFF: contact is open)

Settings	Functions	Descriptions
0	No Function	
1	Operation Indication	Active when the drive is not at STOP.
2	Master Frequency Attained	Active when the AC motor drive reaches the output frequency setting.
3	Desired Frequency Attained 1 (Pr.02-22)	Active when the desired frequency (Pr.02-22) is attained.
4	Desired Frequency Attained 2 (Pr.02-24)	Active when the desired frequency (Pr.02-24) is attained.
5	Zero Speed (frequency command)	Active when frequency command $=0$. (the drive should be at RUN mode)
6	Zero Speed with Stop (frequency command)	Active when frequency command $=0$ or stop.
7	Over Torque 1	Active when detecting over-torque. Refer to Pr.06-07 (over-torque detection level-OT1) and Pr.06-08 (over-torque detection time-OT1). Refer to Pr.06-06~06-08.
8	Over Torque 2	Active when detecting over-torque. Refer to Pr.06-10 (over-torque detection level-OT2) and Pr.06-11 (over-torque detection time-OT2). Refer to Pr.06-09~06-11.
9	Drive Ready	Active when the drive is ON and no abnormality detected.
10	Low voltage warn (Lv)	Active when the DC Bus voltage is too low. (refer to Pr.06-00 low voltage level)
11	Malfunction Indication	Active when fault occurs (except Lv stop).
12	Mechanical Brake Release (Pr.02-32)	When drive runs after Pr.02-32, it will be ON. This function should be used with DC brake and it is recommended to use contact "b"(N.C).
13	Overheat	Active when IGBT or heat sink overheats to prevent OH turn off the drive. (refer to Pr.06-15)
14	Software Brake Signal Indication	Active when the soft brake function is ON. (refer to Pr.07-00)
15	PID Feedback Error	Active when the feedback signal is abn
16	Slip Error (oSL)	Active when the slip error is detected.
17	Terminal Count Value Attained (Pr.02-20; not return to 0)	Active when the counter reaches Terminal Counter Value (Pr.02-19). This contact won't active when Pr.02-20>Pr.02-19.
18	Preliminary Counter Value Attained (Pr.02-19; returns to 0)	Active when the counter reaches Preliminary Counter Value (Pr.02-19).
19	External Base Block input (B.B.)	Active when the output of the AC motor drive is shut off during base block.
20	Warning Output	Active when the warning is detected.
21	Over-voltage Warning	Active when the over-voltage is detected.
22	Over-current Stall Prevention Warning	Active when the over-current stall prevention is detected.

Settings	Functions	Descriptions
23	Over-voltage Stall prevention Warning	Active when the over-voltage stall prevention is detected.
24	Operation Mode Indication	Active when the operation command is controlled by externa terminal. (Pr.00-20才0)
25	Forward Command	Active when the operation direction is forward.
26	Reverse Command	Active when the operation direction is reverse.
27	Output when Current $>=\text { Pr.02-33 }$	Active when current is >= Pr.02-33.
28	Output when Current <= Pr.02-33	Active when current is $<=$ Pr.02-33.
29	Output when frequency >= Pr.02-34	Active when frequency is >= Pr.02-34.
30	Output when Frequency <= Pr.02-34	Active when frequency is <= Pr.02-34.
31	Y-connection for the Motor Coil	Active when PR.05-24 is less than Pr.05-23 and time is more than Pr.05-25.
32	-connection for the Motor Coil	Active when PR.05-24 is higher than Pr.05-23 and time is more than Pr.05-25.
33	Zero Speed (actual output frequency)	Active when the actual output frequency is 0 . (the drive should be at RUN mode)
34	Zero Speed with Stop (actual output frequency)	Active when the actual output frequency is 0 or Stop.
35	Error Output Selection 1 (Pr.06-23)	Active when Pr.06-23 is ON.
36	Error Output Selection 2 (Pr.06-24)	Active when Pr.06-24 is ON.
37	Error Output Selection 3 (Pr.06-25)	Active when Pr.06-25 is ON.
38	Error Output Selection 4 (Pr.06-26)	Active when Pr.06-26 is ON.
39	Reserved	
40	Speed Attained (including zero speed)	Active when the output frequency reaches frequency setting or stop.
41	Reserved	
42	Crane Function	This function should be used with Pr.02-32, Pr.02-33 and Pr.02-34. Active when setting Pr.07-16=Pr.02-34 and Fcmd $>$ Pr.02-34 and output current > Pr.02-33 and Time > Pr.02-32. The example of the crane application is in the following for your reference.
43	Motor Zero-speed Output (Pr.02-47)	Active when motor actual speed is less than Pr.02-47.
44	Low Current Output	This function needs to be used with Pr.06-71 ~ Pr.06-73
45	Reserved	
46	Master dEb signal output	When dEb arise at Master, MO will send a dEb signal to Slave. Then Slave will follow Master's command and decelerate to stop simultaneously.
47	Brake Release at Stop	When drive stops, the corresponding multi-function terminal will be ON if the frequency is less than Pr.02-34. After it is ON, it will be OFF when brake delay time exceeds Pr.02-32.

Example: Crane Application

It is recommended to be used with Dwell function as shown in the following:

72-95Reserved

```
Settings 0000h~FFFFh (0:N.O.; 1:N.C.)
```

\square The setting of this parameter is in hexadecimal.
IId This parameter is set via bit setting. If a bit is 1 , the corresponding output acts in the opposite way.
1 Bit setting

bit4	bit3	bit2	bit1	bit0
DFM2	DFM1	Reserved	RY2	RY1

B2-!

Terminal Counting Value Attained (return to 0)
Factory Setting: 0
Settings 0~65500
1 The counter trigger can be set by the multi-function terminal MI6 (set Pr.02-06 to 23). Upon completion of counting, the specified output terminal will be activated (Pr.02-13~02-14, Pr.02-36, 02-37 is set to 18). Pr.02-19 can't be set to 0 .
When the display shows c5555, the drive has counted 5,555 times. If display shows c5555•, it means that real counter value is between 55,550 to 55,559 .

I2-3 Preliminary Counting Value Attained (not return to 0)

Factory Setting: 0
Settings 0~65500
[a] When the counter value counts from 1 and reaches this value, the corresponding multi-function output terminal will be activated, provided one of Pr. 02-13, 02-14, 02-36, 02-37 set to 17 (Preliminary Count Value Setting). This parameter can be used for the end of the counting to make the drive runs from the low speed to stop.

Factory Setting: 1
Settings 0~106
1 It is used to set the signal for the digital output terminals (DFM-DCM) and digital frequency output (pulse X work period=50\%). Output pulse per second = output frequency $\mathrm{X} \operatorname{Pr} .02-21 \leq 33 \mathrm{kHz}$.
[1] When Pr02-21=0, the external terminal (DFM1) will be multi-function output. Pr02-16 sets up the function of DFM1's output.
1 When Pr02-21 ≥ 1, the external terminal (DFM1) will be digital frequency output. Output frequency = H^{*} Gain.

Settings $0.00 \sim 600.00 \mathrm{~Hz}$

123-23

The Width of the Desired Frequency Attained 1
Factory Setting: 2.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$

Factory Setting: 60.00/50.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$
[8] 5 The Width of the Desired Frequency Attained 2
Factory Setting: 2.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$
[1] Once output frequency reaches desired frequency and the corresponding multi-function output terminal is set to 3 or 4 (Pr.02-13, 02-14, 02-36, and 02-37), this multi-function output terminal will be ON.

日2-25

Reserved

日C-3;

92-32

Brake Delay Time
Factory Setting: 0.000
Settings $0.000 \sim 65.000 \mathrm{sec}$
1 When the AC motor drive runs after Pr.02-32 delay time, the corresponding multi-function output terminal (12: mechanical brake release) will be ON. It is recommended to use this function with DC brake.

＠If this parameter is used without DC brake，it will be invalid．Refer to the following operation timing．

「ごア3 Output Current Level Setting for Multi－function Output Terminals

Factory Setting： 0
Settings 0～100\％
［0］When output current is higher or equal to Pr．02－33，it will activate multi－function output terminal （Pr．02－13，02－14，02－16，and 02－17 is set to 27）．
［ad When output current is lower than Pr．02－33，it will activate multi－function output terminal（Pr．02－13， $02-14,02-16,02-17$ is set to 28 ）．

日2-34

Output Boundary for Multi-function Output Terminals
Factory Setting: 0.00
Settings $0.00 \sim 60.00 \mathrm{~Hz}$
1 When output frequency is higher than Pr.02-34, it will activate the multi-function terminal (Pr.02-13, $02-14,02-16,02-17$ is set to 29).

1 When output frequency is lower than Pr.02-34, it will activate the multi-function terminal (Pr.02-13, $02-14,02-16,02-17$ is set to 30).

[2-35

External Operation Control Selection after Reset and Activate
Factory Setting: 0
Settings 0: Disable
1: Drive runs if the run command still exists after reset or re-boots.
1 Setting 1:
Status 1: After the drive is powered on and the external terminal for RUN keeps ON, the drive will run.
Status 2: After clearing fault once a fault is detected and the external terminal for RUN keeps ON, the drive can run after pressing RESET key.

日2-38

~ Reserved

92-46

Zero-speed Level of Motor
Factory Setting: 0
Settings 0~65535 rpm
1 This parameter should be used with the multi-function output terminals (set to 43). It needs to be used with PG cared and motor with encoder feedback.This parameter is used to set the level of motor zero-speed. When the actual speed is lower than this setting, the corresponding multi-function output terminal 43 will be ON as shown as follows.

Settings $\quad 0.000 \sim 65000 \mathrm{~ms}$

It is used to improve the unstable speed or unstable position due to the insufficient of analog resolution. It needs to be used with external terminal (set to 43). After setting this parameter, it needs to adjust the analog output resolution of controller simultaneously by this setting.

BI 5 Display the Status of Multi-function Input Terminal

Factory Setting: Read only

(1) For Example:

If Pr.02-50 displays 0034h (Hex), i.e. the value is 52, and 110100 (binary). It means MI1, MI3 and M14 are active.

Weights
Bit
$0=O N$
$1=O F F$
$1=O F F$
Settings
$=$ bit $5 \times 2^{5}+$ bit $4 \times 2^{4}+$ bit 2×2^{2}
$=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{2}$
$=32+16+4=52$

A2-5

Status of Multi-function Output Terminal
Factory Setting: Read only
[1] For Example:
If Pr.02-51 displays 000Bh (Hex), i.e. the value is 11, and 1011 (binary). It means RY1, RY2 and MO1 are ON.

[20 5 Display External Output terminal occupied by PLC

Factory Setting: Read only
(1) P.02-52 shows the external multi-function input terminal that used by PLC.

$110]$ For Example:
When Pr.02-52 displays 0034h(hex) and switching to 110100 (binary), it means MI1, MI3 and MI4 are used by PLC.

푤․․ Display Analog Input Terminal occupied by PLC

Factory Setting: Read only
[1] P.02-53 shows the external multi-function output terminal that used by PLC.

[1] For Example:

If the value of Pr.02-53 displays 0003h (Hex), it means RY1and RY2 are used by PLC.

85^{2-54}

Display the Frequency Command Executed by External Terminal
Factory Setting: Read only
Settings Read only
When the source of frequency command comes from the external terminal, if Lv or Fault occurs at this time, the frequency command of the external terminal will be saved in this parameter.

[30 55 Digital Output Gain (DFM 2)

Factory Setting: 1
Settings 0~106It is used to set the signal for the digital output terminals (DFM 2-DCM) and digital frequency output (pulse X work period=50\%). Output pulse per second = output frequency X Pr.02-55 $\leq 33 \mathrm{kHz}$.When Pr02-55=0, the external terminal (DFM2) will be multi-function output. Pr02-17 sets up the function of DFM1's output.When Pr02-55 ≥ 1, the external terminal (DFM2) will be digital frequency output. Output frequency = H^{*} Gain.

Analog Input Selection (AVI)
Factory Setting: 1
~ $03-6$
Analog Input Selection (ACI)
Factory Setting: 0
N 日3-42
Analog Input Selection (AUI)
Factory Setting: 0
Settings
0 : No function
1: Frequency command (torque limit under torque control mode)
2: Torque command (torque limit under speed mode)
3: Torque compensation command
4: PID target value
5: PID feedback signal
6: PTC thermistor input value
7: Positive torque limit
8: Negative torque limit
9: Regenerative torque limit
10: Positive/negative torque limit
1 When it is frequency command or TQC speed limit, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is 0 - max. output frequency(Pr.01-00)
1 When it is torque command or torque limit, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0-\mathrm{max}$. output torque (Pr.11-27).When it is torque compensation, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0-$ rated torque.

73-83

Analog Input Bias (AVI)
Factory Setting: 0
Settings -100.0~100.0\%
1 It is used to set the corresponding AVI voltage of the external analog input 0.

Factory Setting: 0
Settings -100.0~100.0\%
1 It is used to set the corresponding ACl voltage of the external analog input 0 .

- 3 - 05

Analog Voltage Input Bias (AUI)
Factory Setting: 0
Settings -100.0~100.0\%
It is used to set the corresponding AUI voltage of the external analog input 0 .The relation between external input voltage/current and setting frequency: $0 \sim 10 \mathrm{~V}(4-20 \mathrm{~mA})$ corresponds to $0-60 \mathrm{~Hz}$.

Reserved

Positive/negative Bias Mode (AVI)
Positive/negative Bias Mode (ACI)
Positive/negative Bias Mode (AUI)
Factory Setting: 0
Settings 0: Zero bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
1 In a noisy environment, it is advantageous to use negative bias to provide a noise margin. It is recommended NOT to use less than 1V to set the operation frequency.
In the diagram below: Black color line: Frequency. Gray color line: Voltage

[^1]

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive
frequency = forward run; negative
frequency $=$ reverse run. Direction
can not be switched by digital keypad or
external teriminal control.
Pr.03-11Analog Input Gain (AVI)=100\%

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=100 \%$
Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11Analog Input Gain (AVI)=100\%

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain $(\mathrm{AVI})=100 \%$

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control
Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : Nobias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command forReverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain $($ AVI $)=100 \%$

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: Nobias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control
Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr.03-11 Analog Input Gain $(A V I)=100 \%$

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr.03-11 Analog Input Gain $(A V I)=100 \%$

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI)=111.1\%
10/9=111.1\%

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11Analog Input Gain (AVI)=111.1\%
10/9 = 111.1%

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: Nobias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain $(A V I)=111.1 \%$ $10 / 9=111.1 \%$

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr.03-11 Analog Input Gain $(A V I)=111.1 \%$ $10 / 9=111.1 \%$

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr03-11 Analog Input Gain $(\mathrm{AVI})=111.1 \%$
$10 / 9=111.1 \%$

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr03-11Analog Input Gain $(\mathrm{AVI})=111.1 \%$
10/9 = 111.1%

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr03-11 Analog Input Gain $($ AVI $)=111.1 \%$ $10 / 9=111.1 \%$

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control
Pro3-11 Analog Input Gain (AVI) $=100 \%$

$$
10 / 9=111.1 \%
$$

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{\mathrm{XV}} \quad \mathrm{XV}=\frac{10}{9}=1.11 \mathrm{~V}$

$$
\therefore \operatorname{Pr} .03-03=\frac{1.11}{10} \times 10 \%
$$

Calculate the gain: Pr. $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control
Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{\mathrm{XV}} \quad \mathrm{XV}=\frac{10}{9}=1.11 \mathrm{~V}$
\therefore Pr. $03-03=\frac{1.11}{10} \times 100 \%$
Calculate the gain: Pr. $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

$$
\begin{aligned}
& \text { Calculate the bias: } \frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{\mathrm{XV}} \mathrm{XV}=\frac{10}{9}=1.11 \mathrm{~V} \\
& \qquad \therefore \operatorname{Pr} .03-03=\frac{1.11}{10} \times 10 \% \\
& \text { Calculate the gain: } \operatorname{Pr} .03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%
\end{aligned}
$$

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{\mathrm{XV}} \Rightarrow X V=\frac{10}{9}=1.11 \mathrm{~V}$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{\mathrm{XV}} \Rightarrow \mathrm{XV}=\frac{10}{9}=1.11 \mathrm{~V}$

$$
\therefore \text { Pr.03-03 }=\frac{1.11}{10} \times 100 \%
$$

$$
\text { Calculate the gain: Pr.03-11= } \frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%
$$

$$
\begin{aligned}
& \therefore \operatorname{Pr} .03-03=\frac{1.11}{10} \times 100 \% \\
& \text { Calculate the gain: } \operatorname{Pr} .03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%
\end{aligned}
$$

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command forReverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{\mathrm{XV}} \quad \Longrightarrow \quad X V=\frac{10}{9}=1.11 \mathrm{~V}$
\therefore Pr. $03-03=\frac{1.11}{10} \times 100 \%$
Calculate the gain: $\operatorname{Pr} .03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{\mathrm{XV}} \Rightarrow \mathrm{XV}=\frac{10}{9}=1.11 \mathrm{~V}$

$$
\therefore \operatorname{Pr} .03-03=\frac{1.11}{10} \times 100 \%
$$

Calculate the gain: Pr.03-11 $=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Pr.00-21=0 (Dgital keypad control and d run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AUI) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.00-13 Analog Positive Input Gain (AUI)=100\%
Pr.03-14 Analog Negative Input Gain (AUI)= 100\%

Pr.00-21=0 (Dgital keypad control and d run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AUI) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive
frequency = forward run; negative
frequency $=$ reverse run. Direction
can not be switched by digital keypad or external teriminal control.

Pr.00-13 Analog Positive Input Gain (AUI)=100\%
Pr.03-14 Analog Negative Input Gain (AUI)= 100\%

Pr.00-21=0 (Dgital keypad control and d run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AUI) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.00-13 Analog Positive Input Gain (AUI)= 100\%
Pr.03-14 Analog Negative Input Gain (AUI)= 100\%

Pr.00-21=0 (Dgital keypad control and d run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AUI) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center

4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.00-13 Analog Positive Input Gain (AUI)=100\%
Pr.03-14 Analog Negative Input Gain (AUI)= 100\%

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AUI) = 10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: Nobias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.00-13 Analog Positive Input Gain (AUI)=100\%
Pr.03-14 Analog Negative Input Gain (AUI)=100\%

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AUI) $=10 \%$ Pr.03-07~03-09 (Positive/Negative Bias Mode)

0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.00-13 Analog Positive Input Gain (AUI)= 100\%
Pr.03-14 Analog Negative Input Gain (AUI)=100\%

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AUI) = 10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.00-13 Analog Positive Input Gain (AUI)=100\% Pr.03-14 Analog Negative Input Gain (AUI)= 100\%

Pr.00-21 $=0$ (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AUI) = 10\% Pr.03-07~03-09 (Positive/Negative Bias Mode)

0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr.00-13 Analog Positive Input Gain (AUI)=100\%
Pr.03-14 Analog Negative Input Gain (AUI)= 100\%

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AUI) = 10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.00-13 Analog Positive Input Gain (AUI)= 111.1\%
(10/9) *100\% = 111.1\%
Pr.00-14 Analog Negative Input Gain $(A U I)=100 \%$

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AUI) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.00-13 Analog Positive Input Gain (AUI)= 111.1 \%
$(10 / 9)$ *100\% = 111.1\%
Pr.00-14 Analog Negative Input Gain $(A U I)=100 \%$

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AUI) = 10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.00-13 Analog Positive Input Gain (AUI)=111.1\%
$(10 / 9) * 100 \%=111.1 \%$
Pr.00-14 Analog Negative Input Gain (AUI) $=100 \%$

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AUI) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.00-13 Analog Positive Input Gain (AUI)= 111.1\%
(10/9)*100\% = 111.1\%
Pr.00-14 Analog Negative Input Gain $($ AUI $)=100 \%$

Pr.00-21 $=0$ (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AUI) $=10 \%$ Pr.03-07~03-09 (Positive/Negative Bias Mode)

0 : No bias

1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.00-13 Analog Positive Input Gain (AUI) $=111.1 \%$
(10/9) * $100 \%=111.1 \%$
Pr.00-14 Analog Negative Input Gain $(A U I)=90.9 \%$
(10/11)*100\% = 90.9\%

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AUI) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : Nobias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control
Pr.00-13 Analog Positive Input Gain (AUI)= 111.1\%
(10/9)*100\% = 111.1\%
Pr.00-14 Analog Negative Input Gain (AUI) $=90.9 \%$
$(10 / 11) * 100 \%=90.9 \%$

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AUI) = 10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.00-13 Analog Positive Input Gain (AUI)= 111.1\%
$(10 / 9) * 100 \%=111.1 \%$
Pr.00-14 Analog Negative Input Gain $(A U I)=90.9 \%$
$(10 / 11) * 100 \%=90.9 \%$

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AUI) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: Nobias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.00-13 Analog Positive Input Gain (AUI)= 111.1\%

$$
(10 / 9) * 100 \%=111.1 \%
$$

Pr.00-14 Analog Negative Input Gain (AUI) $=90.9 \%$
$(10 / 11) * 100 \%=90.9 \%$

日3-9
 Analog Frequency Command for Reverse Run

Factory Setting: 0
Settings $\quad 0$: Negative frequency is not valid. Forward and reverse run is controlled by digital
keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Run direction can not be switched by digital keypad or the external terminal control.
Parameter 03-10 is used to enable reverse run command when a negative frequency (negative bias and gain) is input to AVI or ACl analog signal input.

Analog Input Gain (AVI)
Analog Input Gain (ACI)
Analog Positive Input Gain (AUI)
Analog Negative Input Gain (AUI)

Settings -500.0~500.0\%
10 Parameters 03-03 to 03-14 are used when the source of frequency command is the analog voltage/current signal.

Analog Input Filter Time (AVI)
73-16
Analog Input Filter Time (ACI)

73-17

Analog Input Filter Time (AUI)
Factory Setting: 0.10
Settings $0.00 \sim 2.00 \mathrm{sec}$
$\mathbb{1} \square$ These input delays can be used to filter noisy analog signal.
1 When the setting of the time constant is too large, the control will be stable but the control response will be slow. When the setting of time constant is too small, the control response will be faster but the control may be unstable. To find the optimal setting, please adjust the setting according to the control stable or response status.

10 When Pr.03-18 is set to 0 and the analog input setting is the same, the priority for $\mathrm{AVI}, \mathrm{ACI}$ and AUI are $\mathrm{AVI}>\mathrm{ACl}>\mathrm{AUI}$.

> Fcommand $=\left[(\text { ay bias })^{*} \text { gain }\right]^{*} \frac{\operatorname{Fmax}(01-00)}{10 \mathrm{~V} \text { or } 16 \mathrm{~mA}}$
> Fcommand: the co responding frequency for 10 V or 20 mA ay: 10 or 16 mA bias : Pr. $03-03$, Pr. $03-04$, Pr. $03-05$ gain : Pr.03-11, Pr. $03-12$, Pr. $03-13$, Pr. $03-14$

73-19

Treatment to 4-20mA Analog Input Signal Loss
Factory Setting: 0
Settings 0: Disable
1: Continue operation at the last frequency
2: Decelerate to stop
3: Stop immediately and display ACE
1 This parameter determines the behavior when $4 \sim 20 \mathrm{~mA}$ signal is loss, when $\mathrm{AVI}(\mathrm{Pr} .03-28=2$) or ACl (03-29=0).
1 When Pr.03-28 is not set to 2 , it means the voltage input to AVI terminal is $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$. At this moment, Pr.03-19 will be invalid.
$\mathbb{1}$ When Pr.03-29 is set to 1 , it means the voltage input to ACl terminal is for $0-10 \mathrm{~V}$. At this moment, Pr.03-19 will be invalid.
1 When setting is 1 or 2 , it will display warning code "AnL" on the keypad. It will be blinking until the
loss of the ACl signal is recovered or drive is stop.

73-9 Multi-function Output 1 (AFM1)

Factory Setting: 0
Multi-function Output 2 (AFM2)
Factory Setting: 0
Settings 0~23
Function Chart

Settings	Functions	Descriptions
0	Output frequency (Hz)	Max. frequency Pr.01-00 is regarded as 100\%.
1	Frequency command (Hz)	Max. frequency Pr.01-00 is regarded as 100%.
2	Motor speed (Hz)	600 Hz is regarded as 100%
3	Output current (rms)	(2.5 X rated current) is regarded as 100\%
4	Output voltage	(2 X rated voltage) is regarded as 100\%
5	DC Bus Voltage	$450 \mathrm{~V}(900 \mathrm{~V})=100 \%$
6	Power factor	-1.000~1.000=100\%
7	Power	Rated power is regarded as 100\%
8	Output torque	Full-load torque is regarded as 100\%
9	AVI	0~10V=0~100\%
10	ACI	0~20mA=0~100\%
11	AUI	-10~10V=0~100\%
12	q-axis current (lq)	(2.5 X rated current) is regarded as 100\%
13	q-axis feedback value (lq)	(2.5 X rated current) is regarded as 100\%
14	d-axis current (Id)	(2.5 X rated current) is regarded as 100\%
15	d-axis feedback value (Id)	(2.5 X rated current) is regarded as 100\%
16	q -axis voltage (Vq)	$250 \mathrm{~V}(500 \mathrm{~V})=100 \%$
17	d-axis voltage(Vd)	$250 \mathrm{~V}(500 \mathrm{~V})=100 \%$
18	Torque command	Rated torque is regarded as 100\%
19	Reserved	
20	Output for CANopen control	For CANopen analog output
21	RS485 analog output	For communication output (CMC-MOD01, CMC-EIP01, CMC-PN01, CMC-DN01)
22	Reserved	
23	Constant voltage/current output	Pr.03-32 and Pr.03-33 controls voltage/current output level $0 \sim 100 \%$ of Pr.03-32 corresponds to $0 \sim 10 \mathrm{~V}$ of AFM1.

173-2 : Gain of Analog Output 1 (AFM1)

Factory Setting: 100.0
Gain of Analog Output 2 (AFM2)
Factory Setting: 100.0
Settings 0~200.0\%
[1] It is used to adjust the analog voltage level (Pr.03-20) that terminal AFM outputs.
(1)]

This parameter is set the corresponding voltage of the analog output 0 .
~ $03-25$
Analog Output 1 when in REV Direction (AFM1)
Analog Output 2 when in REV Direction (AFM2)
Factory Setting: 0
Settings 0: Absolute value in REV direction
1: Output 0 V in REV direction; output $0-10 \mathrm{~V}$ in FWD direction
2: Output 5-0V in REV direction; output 5-10V in FWD direction

03-22=0
$03-25=0$

03-22=1
$03-25=1$

03-22=2
$03-25=2$

Selections for the analog output direction

Reserved

Reserved

Settings $0: 0-10 \mathrm{~V}$
1: 0-20mA
2: 4-20mA
ACI Selection
Factory Setting: 0
Settings $\quad 0: 4-20 \mathrm{~mA}$
1: 0-10V
2: $0-20 \mathrm{~mA}$
1 When changing the input mode, please check if the switch of external terminal (SW3, SW4) corresponds to the setting of Pr.03-28~03-29.

73-39

Status of PLC Output Terminal
Factory Setting: \#\#
Settings 0~65535
Monitor the status of PLC analog output terminals
[1] P.03-30 shows the external multi-function output terminal that used by PLC.

$$
\begin{array}{llll}
\text { NOTE } & 2 & 1 & 0 \\
2^{3}=8 & 2=4 & 2=2 & { }_{2}=1
\end{array}
$$

（1）For Example：
If the value of Pr．02－30 displays 0002h（Hex），it means AFM1and AFM2 are used by PLC．

If－3 ：AFM2 0－20mA Output Selection

Factory Setting： 0
$\begin{array}{rr}\text { Settings } & 0: 0-20 \mathrm{~mA} \text { output } \\ & 1: 4-20 \mathrm{~mA} \text { output }\end{array}$

59－32
 ［13－33
 AFM1 DC Output Setting Level
 AFM2 DC Output Setting Level

Factory Setting： 0.00
Settings $0.00 \sim 100.00 \%$

83－34

～Reserve

日3－38

23－39 Keypad potentiometer Selection
Factory Setting：0
Settings 0：No Function
1：Frequency Command

B－4 Keypad potentiometer input Bias

Factory Setting：0．0
Settings－100．0～100．0\％
［73－1 ：Keypad potentiometer positive／negative Bias Mode
出廠設定値：0
Settings 0：No bias
1：Lower than or equal to bias
2：Greater than or equal to bias
3：The absolute value of the bias voltage while serving as the center

Refer to Pr.03-07~03-09.
[3-4 Keypad potentiometer input Gain
Factory Setting:100.0
Settings -500.0~500.0\%

23-43
 AFM1 DC output setting level Keypad potentiometer analog Input Filter Time

Factory Setting:0.01
Settings $0 \sim 2.00 \mathrm{sec}$.

53-44

~ Reserve

73-43

19-5 Analog Input Curve Selection
Factory Setting: 0
Settings 0: Regular Curve
1: 3 point curve of AVI
2: 3 point curve of ACI
3: 3 point curve of AVI \& ACI
4: 3 point curve of AUI
5: 3 point curve of AVI \& AUI
6: 3 point curve of $\mathrm{ACI} \& A U I$
7: 3 point curve of AVI \& ACI \& AUI

173-5:AVI Low Point

Factory Setting: 0.00
Settings $03-28=0,0.00 \sim 10.00 \mathrm{~V}$
$03-28 \neq 0,0.00 \sim 20.00 \mathrm{~mA}$
18-5
Factory Setting: 0.00
Settings 0.00~100.00\%

[3-53 AVI Mid Point

Factory Setting: 5.00
Settings $03-28=0,0.00 \sim 10.00 \mathrm{~V}$
03-28 $=0,0.00 \sim 20.00 \mathrm{~mA}$
[3-54 AVI Proportional Mid Point
Factory Setting: 50.00
Settings 0.00~100.00\%

Settings $03-28=0,0.00 \sim 10.00 \mathrm{~V}$
03－28 $=0,0.00 \sim 20.00 \mathrm{~mA}$

193－56

AVI Proportional High Point
Factory Setting： 100.00
Settings $0.00 \sim 100.00 \%$
［ad When Pr．03－28 $=0, \mathrm{AVI}$ setting is $0-10 \mathrm{~V}$ and the unit is in voltage (V) ．
When $\operatorname{Pr} .03-28 \neq 0$ ， AVI setting is $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ and the unit is in current（ mA ）．
When setting analog input AVI to frequency command，it 100\％corresponds to Fmax（Pr．01－00 Max．operation frequency）．
$1 \mathbb{1}$ Three of the AVI points can be set according to user＇s demand on voltage（current）and proportion， there is no setting limit for ACl points．

193－57 ACI Low Point

Factory Setting： 4.00
Settings Pr．03－29＝1，0．00～10．00V
Pr．03－29キ1， $0.00 \sim 20.00 \mathrm{~mA}$

73－58 ACI Proportional Low Point

Factory Setting： 0.00
Settings 0．00～100．00\％

日3－53
 ACI Mid Point

Factory Setting： 12.00

$$
\begin{array}{ll}
\text { Settings } & 03-29=1,0.00 \sim 10.00 \mathrm{~V} \\
& 03-29 \neq 1,0.00 \sim 20.00 \mathrm{~mA}
\end{array}
$$

3－6是 ACI Proportional Mid Point

Factory Setting： 50.00
Settings 0．00～100．00\％

73－6：ACI High Point

Factory Setting： 20.00
Settings $03-29=1,0.00 \sim 10.00 \mathrm{~V}$
03－29 $\neq 1,0.00 \sim 20.00 \mathrm{~mA}$

［3－62 ACI Proportional High Point

Factory Setting： 100.00
Settings $0.00 \sim 100.00 \%$
（1）When Pr．03－29＝1， ACI setting is $0-10 \mathrm{~V}$ and the unit is in voltage (V) ．
\square When Pr． $03-29 \neq 1, \mathrm{ACl}$ setting is $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ and the unit is in current（mA）．
［id When setting analog input ACI to frequency command，it 100\％corresponds to Fmax（Pr．01－00 Max．operation frequency）．
1 Three of the ACI points can be set according to user＇s demand on voltage（current）and proportion， there is no setting limit for ACl points．

13－63 Positive AUI Voltage Low Point

Factory Setting： 0.00

Factory Setting: 0.00
Settings 0.00~100.00\%

193-65

Positive AUI Voltage Mid Point
Factory Setting: 5.00
Settings 0.00~10.00V
Positive AUI Voltage Proportional Mid Point
Factory Setting: 50.00
Settings 0.00~100.00\%

N 7 7-67 Positive AUI Voltage High Point

Factory Setting: 10.00
Settings $0.00 \sim 10.00 \mathrm{~V}$
Positive AUI Voltage Proportional High Point
Factory Setting: 100.00
Settings 0.00~100.00\%
110 When setting positive voltage AUI to frequency command, it 100\% corresponds to Fmax (Pr.01-00 Max. operation frequency) and the motor runs in forward direction.
[a] Three of the positive voltage AUI points can be set according to user's demand on voltage and proportion, there is no setting limit for AUI points.

13-6] Negative AUI Voltage Low Point

Factory Setting: 0.00
Settings 0.00~-10.00V

Factory Setting: 0.00
Settings 0.00~-100.00\%
63-7!
Negative AUI Voltage Mid Point
Factory Setting: -5.00
Settings 0.00~-10.00V
[7ア - 7 N Negative AUI Voltage Proportional Mid Point
Factory Setting: -50.00

Settings 0.00~-100.00\%
Negative AUI Voltage High Point
Factory Setting: -10.00
Settings $0.00 \sim-10.00 \mathrm{~V}$

83-74

Negative AUI Voltage Proportional High Point
Factory Setting: -100.00
Settings 0.00~-100.00\%
When setting negative voltage AUI to frequency command, it 100\% corresponds to Fmax (Pr.01-00 Max. operation frequency) and the motor runs in reverse direction.

12 Three of the negative voltage AUI points can be set according to user's demand on voltage and proportion, there is no setting limit for AUI points.

1st Step Speed Frequency

2nd Step Speed Frequency
3rd Step Speed Frequency
4th Step Speed Frequency
5th Step Speed Frequency
6th Step Speed Frequency
7th Step Speed Frequency
8th Step Speed Frequency
9th Step Speed Frequency
10th Step Speed Frequency
11th Step Speed Frequency
12th Step Speed Frequency
13th Step Speed Frequency
14th Step Speed Frequency
15th Step Speed Frequency
Factory Setting: 0.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$
110 The Multi-function Input Terminals (refer to setting 1~4 of Pr.02-01~02-08 and 02-26~02-31) are used to select one of the AC motor drive Multi-step speeds(max. 15 speeds). The speeds (frequencies) are determined by Pr.04-00 to 04-14 as shown in the following.
1 The run/stop command can be controlled by the external terminal/digital keypad/communication via Pr.00-21.
[al Each one of multi-step speeds can be set within $0.0 \sim 600.0 \mathrm{~Hz}$ during operation.Explanation for the timing diagram for multi-step speeds and external terminals The Related parameter settings are:

1. Pr.04-00~04-14: setting multi-step speeds (to set the frequency of each step speed)
2. Pr.02-01~02-08, 02-26~02-31: setting multi-function input terminals (multi-step speed 1~4)

■ Related parameters: 01-22 JOG Frequency, 02-01 Multi-function Input Command 1 (MI1), 02-02 Multi-function Input Command 2 (MI2), 02-03 Multi-function Input Command 3 (MI3), 02-04 Multi-function Input Command 4 (MI4)

Factory Setting: 0

Settings 0: No function

1: Rolling test for induction motor (Rs, Rr, Lm, Lx, no-load current)
2: Rolling test for induction motor
4: Rolling test for PM motor magnetic pole
5: Rolling test for PM motor
6: Rolling test for IM motor flux curve
12: FOC Sensorless inertia estimation
13: High frequency and blocked rotor test for PM motor parameter

Induction Motor

1 Press [Run]to beging auto tuning. The measured value will be written into motor 1 (Pr.05-05~05-09, Rs, Rr, Lm, Lx, no-load current) and motor 2 (Pr.05-17 to Pr.05-21) automatically.

To begin AUTO-Tuning in rolling test:

1. Make sure that all the parameters are set to factory settings and the motor wiring is correct.
2. Make sure the motor has no-load before executing auto-tuning and the shaft is not connected to any belt or gear motor. It is recommended to set to 2 if the motor can't separate from the load.
3.

	Motor 1 Parameter	Motor 2 Parameter
Motor Rated Frequency	$01-01$	$01-35$
Motor Rated Voltage	$01-02$	$01-36$
Motor Full-load Current	$05-01$	$05-13$
Motor Rated Power	$05-02$	$05-14$
Motor Rated Speed	$05-03$	$05-15$
Motor Pole Numbers	$05-04$	$05-16$

4. Set Pr. $05-00=1$ and press [Run], the drive will begin auto-tuning. Please be aware of the motor that it starts spinning as [Run] is pressed.
5. When auto-tuning is completed, please check if the measured values are written into motor 1 (Pr.05-05 ~05-09) and motor 2 (Pr.05-17 ~05-21) automatically.
6. Mechanical equivalent circuit

※ If Pr.05-00 is set to 2 (static test), user needs to input the no-load current value of motor into Pr.05-05 for motor 1/Pr.05-17 for motor 2.

NOTE

$\boxtimes \quad$ In torque/vector control mode, it is not recommended to have motors run in parallel.
$\square \quad$ It is not recommended to use torque/vector control mode if motor rated power exceeds the rated power of the $A C$ motor drive.

■ When auto-tuning 2 motors, it needs to set multi-function input terminals (setting 14) or change Pr.05-22 for motor 1/motor 2 selection.
$\boxtimes \quad$ The no-load current is usually 20~50\% X rated current.
$\square \quad$ The rated speed can not be greater than or equal to 120f/p (f = rated frequency Pr.01-01/01-35; P: number of motor poles Pr.05-04/05-16).

Permanent Magnet Motor (PM)

[1] Set Pr.05-00=5 or 13 and press [Run] to begin auto tuning for PM motor. The measured values will be written into Pr.05-39(Rs), Pr.05-40 \& 41(Ld \& Lq)and Pr.05-43(PM motor's Ke parameter).

To begin AUTO-Tuning for PM motor in rolling test:

1. Make sure all the parameters are reset to factory setting and the motor wiring installtion is correct.
2. For PM motor, set Pr.05-33=1 and complete the following settings according to your motor specifications, Pr.05-34 rated current, Pr.05-35 rated power, Pr.05-36 rated speed and Pr. 05-37 pole number. The acceleration time and deceleration time should be set according to your motor capacity.
3. Set Pr.05-00 to 5 and press [Run] to begin auto tuning for PM motor. Please be aware of the motor that it starts spinning as [Run] is pressed.
4. When auto-tuning is completed, please check if the measured values are written into Pr.05-39~05-41 and Pr.05-43 automatically.

Dd Set Pr.05-00=4 and press [Run] to begin auto-tuning for PM motor PG offset angle. The measured value will be written into Pr.05-42 automatically.

Note 1: When execute auto-tuning for PM motor PG origin, please make sure the encoder setting are correct (Pr.10-00, 10-01, 10-02), otherwise the PG origin measure error and motor stall may occur.

■
Note 2: If PM motor runs in an opposite direction of the drive's command, switch any two of the UVW cable and re-connect, then execute PG origin search again. It is crucial to execute auto-tuning after the switch otherwise PG origin measure error and motor stall may occur.
(1) Auto-tuning process for measuring PG offset angle of PM motor:

1. Set Pr.05-00=5 and press RUN, or manually input the values into Pr. 01-01, 05-34~-541 and Pr.05-43.
2. It is strongly suggested to remove the motor and unload before beings auto-tuning.
3. Set Pr.05-00=4 and press [Run] to begin auto-tuning. Please be aware of the motor that it starts spinning as [Run] is pressed.
4. When auto-tuning is completed, please check if the PG offset angle is written into Pr.05-42 automatically.

NOTE

When auto-tuning for PM motor is completed and the control mode setting is done, it is recommend to turn the drive's power off and restart again to ensure the drive operates according to the motor parameter settings.

55-9 F Full-load Current of Induction Motor 1 (A)

Unit: Ampere
Factory Setting: \#.\#\#
Settings 10 to 120% of drive's rated current
1 This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. The factory setting is $90 \% \mathrm{X}$ rated current.
Example: The rated current for $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ is 25 and factory setting is 22.5 A . The range for setting will be 10~30A. $(25 * 40 \%=10 \mathrm{~A}$ and $25 * 120 \%=30 \mathrm{~A})$

85-93

Rated Power of Induction Motor 1(kW)
Factory Setting: \#.\#\#
Settings $0 \sim 655.35 \mathrm{~kW}$
1 It is used to set rated power of the motor 1 . The factory setting is the power of the drive.
Rated Speed of Induction Motor 1 (rpm)
Factory Setting:
1710 (60 Hz 4 poles)
1410 (50Hz 4 poles)
Settings 0~65535
It is used to set the rated speed of the motor and need to set according to the value indicated on the motor nameplate.

55-74 Pole Number of Induction Motor 1

Factory Setting: 4
Settings 2~20
1 It is used to set the number of motor poles (must be an even number).

No-load Current of Induction Motor 1 (A)
Unit: Amper
Factory Setting: \#.\#\#
Settings 0 to the factory setting in Pr.05-01
lad The factory setting is $40 \% \mathrm{X}$ rated current.

Stator Resistance(Rs) of Induction Motor 1
Rotor Resistance(Rr) of Induction Motor 1

Settings 0~65.535 Ω

Magnetizing Inductance(Lm) of Induction Motor 1
Stator inductance(Lx) of Induction Motor 1
Factory Setting: \#.\#
Settings $\quad 0 \sim 6553.5 \mathrm{mH}$

~ Reserved
日5-i?
95-13
Full-load Current of Induction Motor 2 (A)
Unit: Ampere
Factory Setting:\#.\#\#
Settings 10~120\%
lad This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. The factory setting is $90 \% \mathrm{X}$ rated current.
Example: The rated current for $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ is 25 A and factory setting is 22.5 A . The range for setting will be $10 \sim 30 \mathrm{~A} .(25 * 40 \%=10 \mathrm{~A}$ and $25 * 120 \%=30 \mathrm{~A})$

55- 14 Rated Power of Induction Motor 2 (kW)

Factory Setting: \#.\#\#
Settings 0~655.35 kW
1 It is used to set rated power of the motor 2. The factory setting is the power of the drive.

- 5 - 15

Rated Speed of Induction Motor 2 (rpm)
Factory Setting: 1710
Settings 0~65535
\square It is used to set the rated speed of the motor and need to set according to the value indicated on the motor nameplate.

55-16

Pole Number of Induction Motor 2
Factory Setting: 4
Settings 2~20
It is used to set the number of motor poles (must be an even number).
155-17 No-load Current of Induction Motor 2 (A)
Unit: Ampere
Factory Setting: \#.\#\#
Settings 0 to the factory setting in Pr.05-01
ad The factory setting is $40 \% \mathrm{X}$ rated current.

Stator Resistance (Rs) of Induction Motor 2
Rotor Resistance (Rr) of Induction Motor 2
Factory Setting: \#.\#\#\#
Settings 0~65.535 Ω

Magnetizing Inductance (Lm) of Induction Motor 2
Stator Inductance (Lx) of Induction Motor 2
Factory Setting: \#.\#
Settings $\quad 0 \sim 6553.5 \mathrm{mH}$

Induction Motor 1/ 2 Selection
Factory Setting: 1
Settings 1: Motor 1
2: Motor 2
It is used to set the motor that driven by the AC motor drive.

Frequency for Y-connection/ \triangle-connection Switch of Induction Motor
Factory Setting: 60.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$

Factory Setting: 0
Settings 0: Disable
1: Enable

©5-25

Delay Time for Y-connection/ \triangle-connection Switch of Induction Motor
Factory Setting: 0.200
Settings $\quad 0.000 \sim 60.000 \mathrm{sec}$
$10]$ P.05-23 and Pr.05-25 are applied in the wide range motors and the motor coil will execute the switch of Y -connection/ Δ-connection as required. (The wide range motors has relation with the motor design. In general, it has higher torque at low speed and Y-connection and it has higher speed at high speed and . . connection.
1 Pr.05-24 is used to enable/disable Y-connection/公connection Switch.
1 When Pr.05-24 is set to 1 , the drive will select by Pr.05-23 setting and current motor frequency to switch motor to Y-connection or $\tilde{\Delta-c o n n e c t i o n: ~ A t ~ t h e ~ s a m e ~ t i m e, ~ i t ~ w i l l ~ a l s o ~ a f f e c t ~ m o t o r ~}$ parameters.
10 Pr.05-25 is used to set the switch delay time of Y-connection/ $/$-connection.
When output frequency reaches Y-connection/ Δ-connection switch frequency, drive will delay by Pr.05-25 before multi-function output terminals are active.

Y- \triangle connection switch: can be used for wide range motor Y -connection for low speed: higher torque can be used for rigid tapping \triangle-connection for high speed: higher torque can be used for high-speed drilling

Settings Read only

-65-27
 Accumulative Watt Per Second of Motor in High Word (W-sec)

Factory Setting: \#.\#
Settings Read only
455-28
Accumulative Watt-hour of Motor (W-Hour)
Factory Setting: \#.\#
Settings Read only
[55-29
Accumulative Watt-hour of Motor in Low Word (KW-Hour)
Factory Setting: \#.\#
Settings Read only
© 15 - -3 \#
Accumulative Watt-hour of Motor in High Word (KW-Hour)
Factory Setting: \#.\#
Settings Read only
[1] Pr.05-26~05-29 records the amount of power consumed by motors. The accumulation begins when the drive is activated and record is saved when the drive stops or turns OFF. The amount of consumed watts will continue to accumulate when the drive activate again. To clear the accumulation, set Pr.00-02 to 5 then the accumulation record will return to 0 .

55-3 Accumulative Motor Operation Time (Min)
Factory Setting: 0
Settings 00~1439
55-32
Accumulative Motor Operation Time (day)
Factory Setting: 0
Settings 00~65535
1 Pr. 05-31 and Pr.05-32 are used to record the motor operation time. To clear the operation time, set Pr.05-31 and Pr.05-32 to 00. Operation time shorter than 60 seconds will not be recorded.

Settings 0~65535 rpm

55-37 Pole number of Permanent Magnet Motor

Factory Setting: 10
Settings 0~65535

[55-38

Inertia of Permanent Magnet Motor
Factory Setting: 0.0
Settings $\quad 0.0 \sim 6553.5 \mathrm{~kg} . \mathrm{cm}^{2}\left(0.0001 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
$1 \mathbb{C l}$ This parameter setting is defined in $\mathbf{k g}-\mathbf{c m}^{\mathbf{2}}$. If this measure is not familiar to you, please refer to the chart below. (Delta's motor inertia chart is for reference purpose only.)
Delta Motor (Low inertia model)

Rated Power(kW)	0.1	0.2	0.4	0.4	0.75	1	2	
Rotor inertia $\left(\mathrm{kg} . \mathrm{m}^{\wedge} 2\right)$	$3.70 \mathrm{E}-06$	$1.77 \mathrm{E}-05$	$2.77 \mathrm{E}-05$	$6.80 \mathrm{E}-05$	$1.13 \mathrm{E}-04$	$2.65 \mathrm{E}-04$	$4.45 \mathrm{E}-04$	

Delta Motor (Mid to High Inertia model)

Rated Power(kW)	0.5	1	1.5	2	2	0.3	0.6	0.9
Rotor inertia (kg.m^2)	$8.17 \mathrm{E}-04$	$8.41 \mathrm{E}-04$	$1.12 \mathrm{E}-03$	$1.46 \mathrm{E}-03$	$3.47 \mathrm{E}-03$	$8.17 \mathrm{E}-04$	$8.41 \mathrm{E}-04$	$1.12 \mathrm{E}-03$

※ For more information on motor inertia value, please refer to Pr.11-01.

95-39

Stator Resistance of PM Motor
Factory Setting: 0.000
Settings $0.000 \sim 65.535 \Omega$

75-4 5 Permanent Magnet Motor Ld

Settings $\quad 0.00 \sim 655.35 \mathrm{mH}$

B5-4 : Permanent Magnet Motor Lq

Factory Setting: 0.00
Settings $\quad 0.00 \sim 655.35 \mathrm{mH}$

75-42 PG Offset angle of PM Motor
Factory Setting: 0
Settings $0.0 \sim 360.0^{\circ}$
1 When Pr.05-00 is set to 4, the drive will detect offset angle and write into Pr.05-42.

Ke parameter of PM Motor
Unit: V/1000rpm
Factory Setting: 0
Settings 0~65535

06 Protection Parameters

N This parameter can be set during operation.

Low Voltage Level

Factory Setting:
Settings 230V Series: 150.0~220.0 Vdc
460V Series: $300.0 \sim 440.0 \mathrm{~V}$
1 It is used to set the Lv level. When the drive is in the low voltage, it will stop output and free to stop.

日6-7 i

Settings 230V Series: 0.0~450.0V
460V Series:0.0~900.0V
0 : Disabled

1 When Pr.06-01 is set to 0.0 , the over-voltage stall prevention function is disabled.
1 During deceleration, the DC bus voltage may exceed its Maximum Allowable Value due to motor regeneration. When this function is enabled, the AC motor drive will not decelerate further and keep the output frequency constant until the voltage drops below the preset value again.
1 ld This function is used for the occasion that the load inertia is unsure. When it stops in the normal load, the over-voltage won't occur during deceleration and fulfill the setting of deceleration time. Sometimes, it may not stop due to over-voltage during decelerating to stop when increasing the load regenerative inertia. At this moment, the AC drive will auto add the deceleration time until drive stop.
$1 \mathbb{1}$ When the over-voltage stall prevention is enabled, drive deceleration time will be larger than the setting.
1 When there is any problem as using deceleration time, refer to the following items to solve it.

1. Add the suitable deceleration time.
2. Add brake resistor (refer to appendix B-1 for details) to consume the electrical energy that regenerated from the motor with heat type.
■ Related parameters: Pr.01-13, 01-15, 01-17, 01-19 (settings of decel. time 1~4), Pr.02-13~02-14 (Multi-function Output 1 RY1, RY2), Pr. 02-16~02-17 Multi-function Output (MO1, 2)

High-voltage
at DC side

Output frequency

185-93 Selection for Over-voltage Stall Prevention

Factory Setting: 0
Settings 0: Traditional over-voltage stall prevention
1: Smart over-voltage prevention
1 When Pr.06-02 is set to 1 , the drive will maintain DCbus voltage when decelerating and prevent OV.

156-93 Over-current Stall Prevention during Acceleration

Settings Normal duty: 0~160\% (100\%: drive's rated current) Heavy duty: $0 \sim 180 \%$ (100% : drive's rated current)

Factory Setting: 120
Factory Setting: 150
[1] If the motor load is too large or drive acceleration time is too short, the AC drive output current may increase abruptly during acceleration and it may cause motor damage or trigger protection functions (OL or OC). This parameter is used to prevent this situation.

During acceleration, the AC drive output current may increase abruptly and exceed the value specified by Pr.06-03 due to rapid acceleration or excessive load on the motor. When this function is enabled, the AC drive will stop accelerating and keep the output frequency constant until the current drops below the maximum value.

1 When the over-current stall prevention is enabled, drive deceleration time will be larger than the setting.
Ila When the Over-Current Stall Prevention occurs due to too small motor capacity or in the factory setting, please decrease Pr.06-03 setting.

1 When there is any problem by using acceleration time, refer to the following items to solve it.
1
Related parameters: Pr.01-12, 01-14, 01-16, 01-18 (settings of accel. time 1~4), Pr.01-44

1. dd the suitable acceleration time.
2. Setting Pr.01-44 Optimal Acceleration/Deceleration Setting to 1,3 or 4 (auto accel.)

1 Optimal Acceleration/Deceleration Setting, Pr.02-13~02-14 (Multi-function Output 1 RY1, RY2), Pr. 02-16~02-17 Multi-function Output (MO1, 2)

95-94 Over-current Stall Prevention during Operation

Settings Normal duty: 0~160\% (100\%: drive's rated current) Factory Setting: 120 Heavy duty: $0 \sim 180 \%$ (100\%: drive's rated current) Factory Setting: 150
$\mathbb{1}$ It is a protection for drive to auto decrease output frequency when the motor is over-load abruptly during motor constant operation.
If If the output current exceeds the setting specified in Pr.06-04 when the drive is operating, the drive will decrease its output frequency (according to Pr.06-05) to prevent the motor stall. If the output current is lower than the setting specified in Pr.06-04, the drive will accelerate (according to Pr.06-05) again to catch up with the set frequency command value.

86-95

Accel./Decel. Time Selection of Stall Prevention at Constant Speed

Factory Setting: 0
Settings 0: by current accel/decel time
1: by the 1st accel/decel time
2: by the 2nd accel/decel time
3: by the 3rd accel/decel time
4: by the 4th accel/decel time
5: by auto accel/decel
1 It is used to set the accel./decel. time selection when stall prevention occurs at constant speed.

Over-torque Detection Selection (OT1)
Factory Setting: 0
Settings 0: Disable
1: Over-torque detection during constant speed operation, continue to operate after detection
2: Over-torque detection during constant speed operation, stop operation after detection

3: Over-torque detection during operation, continue to operate after detection
4: Over-torque detection during operation, stop operation after detection

Factory Setting: 0
Settings 0: Disable
1: Over-torque detection during constant speed operation, continue to operate after detection
2: Over-torque detection during constant speed operation, stop operation after detection

3: Over-torque detection during operation, continue to operation after detection
4: Over-torque detection during operation, stop operation after detection

1 When Pr.06-06 and Pr.06-09 are set to 1 or 3 , it will display a warning message and won't have an abnormal record.
$10]$ When Pr.06-06 and Pr.06-09 are set to 2 or 4 , it will display a warning message and will have an abnormal record.

55-97 Over-torque Detection Level (OT1)
Factory Setting: 120
Settings 10 to 250\% (100\%: drive's rated current)
日6-98 Over-torque Detection Level (OT1)
Factory Setting: 0.1
Settings $0.0 \sim 60.0 \mathrm{sec}$
76-17
Over-torque Detection Level (OT2)
Factory Setting: 120
Settings 10 to 250% (100\%: drive's rated current)
50- ! ! Over-torque Detection Time (OT2)
Factory Setting: 0.1
Settings $0.0 \sim 60.0 \mathrm{sec}$
Over torque detection is determine by the following method: if the output current exceeds the over-torque detection level (Pr.06-07, factory setting: 150\%) and also exceeds Pr.06-08 Over-Torque Detection Time, the fault code "ot1/ot2" will appear. If a Multi-Functional Output Terminal is to over-torque detection (setting 7 or 8), the output is on. Please refer to Pr.02-13~02-14 for details.

Settings 0~250\% (100\%: drive's rated current)
1 Pr.06-12 sets the maximum output current of the drive. Pr.06-12 and Pr.11-17 ~ Pr.11-20 are used to set the drive's output current limit. When the drive is in VF, SVC or VFPG control mode, output frequency will decreases as the output current reaches current limit. It is a current stall prevention.

1: Standard motor
2: Disable
1 It is used to prevent self-cooled motor overheats under low speed. User can use electronic thermal relay to limit driver's output power.

56-:4

Electronic Thermal Characteristic for Motor 1
Electronic Thermal Characteristic for Motor 2
Factory Setting: 60.0
Settings $30.0 \sim 600.0 \mathrm{sec}$
1 The parameter is set by the 150% of motor rated current and the setting of Pr.06-14 and Pr.06-28 to prevent the motor damaged from overheating. When it reaches the setting, it will display "EoL1/EoL2" and the motor will be in free running.

Heat Sink Over-heat (OH) Warning
Factory Setting: 85.0
Settings $0.0 \sim 110.0^{\circ} \mathrm{C}$Pr.06-15 sets the heat sink temperature level of the drive. The drive will output an overheating warning when the temperature exceeds the setting of Pr.06-15. If the setting of Pr.06-15 is higher than the default setting of the drive, the drive will use the default setting level for warning output. Capacitor (CAP) overheating level is set by the drive's default setting, it can not be adjusted.

Over-heating Level (${ }^{\circ} \mathrm{C}$)		
Model	IGBT OH1	CAP OH 2
VFD004CB21A-20	100	95
VFD007CB21A-20	100	95
VFD004CB23A-20	100	95
VFD007CB23A-20	100	95
VFD007CB43A-20	100	95
VFD015CB43A-20	100	95
VFD015CB23A-20	100	95
VFD004CB21A-21M	100	95
VFD007CB21A-21M	100	95
VFD007CB23A-21M	100	95
VFD004CB43A-21M	100	95
VFD007CB43A-21M	100	95

Over-heating Level (${ }^{\circ} \mathrm{C}$)		
Model	IGBT OH1	CAP OH 2
VFD022CB23A-20	100	95
VFD037CB23A-20	100	95
VFD022CB43A-20	100	95
VFD037CB43A-20	100	100
VFD015CB21A-21M	100	95
VFD022CB21A-21M	100	95
VFD022CB23A-21M	100	95
VFD037CB23A-21M	100	95
VFD022CB43A-21M	100	95
VFD037CB43A-21M	100	100
VFD040CB43A-20	100	90
VFD055CB43A-20	100	90

Over-heating Level (${ }^{\circ} \mathrm{C}$)		
VFD015CB43A-21M	100	95
VFD015CB23A-21M	100	95
VFD015CB21A-20	100	95
VFD022CB21A-20	100	95

Over-heating Level $\left({ }^{\circ} \mathrm{C}\right)$		
VFD075CB43A-20	100	110
VFD040CB43A-21M	100	90
VFD055CB43A-21M	100	90
VFD075CB43A-21M	100	110

Stall Prevention Limit Level
Factory Setting: 50
Settings 0~100\% (Refer to Pr.06-03, Pr.06-04)When operation frequency is larger than Pr.01-01; e.g. Pr06-03=150\%, Pr. 06-04=100\% and Pr. 06-16=80\%:
Calculate the Stall Prevention Level during acceleration: Pr.06-03 * Pr. 06-16=150x80\%=120\%. Calculate the Stall Prevention Level at constant speed: Pr.06-04 * Pr.06-16=100x80\%=80\%.

[^2]20: Reserved
21: Drive over-load (oL)
22: Electronics thermal relay 1 (EoL1)
23: Electronics thermal relay 2 (EoL2)
24: Motor PTC overheat (oH3) (PTC)
25: Reserved
26: Over-torque 1 (ot1)
27: Over-torque 2 (ot2)
28: Low current (uC)
29: Reserved
30: Memory write-in error (cF1)
31: Memory read-out error (cF2)
32: Reserved
33: U-phase current detection error (cd1)
34: V-phase current detection error (cd2)
35: W-phase current detection error (cd3)
36: Clamp current detection error (Hd0)
37: Over-current detection error (Hd1)
38: Over-voltage detection error (Hd2)
39: occ IGBT short circuit detection error (Hd3)
40: Auto tuning error (AUE)
41: PID feedback loss (AFE)
42: PG feedback error (PGF1)
43: PG feedback loss (PGF2)
44: PG feedback stall (PGF3)
45: PG slip error (PGF4)
46: Reserved
47: Reserved
48: Analog current input loss (ACE)
49: External fault input (EF)
50: Emergency stop (EF1)
51: External Base Block (bb)
52: Password error (PcodE)
53: Reserved
54: Communication error (CE1)
55: Communication error (CE2)
56: Communication error (CE3)
57: Communication error (CE4)
58: Communication Time-out (CE10)
59: Reserved
60: Brake transistor error (bF)
61: Y-connection/ \triangle-connection switch error (ydc)

62: Decel. Energy Backup Error (dEb)
63: Slip error (oSL)
64: Electromagnet switch error (ryF)
65 : PG Card Error (PGF5)
66-78: Reserved
79: Uocc U phase over current (Detection begins as RUN is pressed, software protection)
80: Vocc V phase over current (Detection begins as RUN is pressed, software protection)
81: Wocc W phase over current (Detection begins as RUN is pressed, software protection)
82: OPHL U phase output phase loss
83: OPHL Vphase output phase loss
84: OPHL Wphase output phase loss
85~100: Reserved
101: CGdE CANopen software disconnect1
102: CHbE CANopen software disconnect2
103: CSYE CANopen synchronous error
104: CbFE CANopen hardware disconnect
105: CIdE CANopen index setting error
106: CAdE CANopen slave station number setting error
107: CFrE CANopen index setting exceed limit
108~110: Reserved
111: InrCOM Internal communication overtime error
When the fault occurs and force stopping, it will record in this parameter.
1 At stop with low voltage Lv (LvS warn, no record). During operation with mid-low voltage Lv (LvA, Lvd, Lvn error, will record).Setting 62: when dEb function is enabled, the drive will execute dEb and record to the Pr.06-17 to Pr.06-22 simultaneously.

Fault Output Option 1
Fault Output Option 2
Fault Output Option 3
Fault Output Option 4
Factory Setting: 0
Settings 0 to 65535 sec (refer to bit table for fault code)
These parameters can be used with multi-function output (set to 35-38) for the specific requirement. When the fault occurs, the corresponding terminals will be activated (It needs to convert binary value to decimal value to fill in Pr.06-23 to Pr.06-26).

Fault Code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
0: No fault							
1: Over-current during acceleration (ocA)	\bullet						

Fault Code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
2: Over-current during deceleration (ocd)	-						
3: Over-current during constant speed(ocn)	\bullet						
4: Ground fault (GFF)	-						
5: IGBT short-circuit (occ)	-						
6: Over-current at stop (ocS)	-						
7: Over-voltage during acceleration (ovA)		-					
8: Over-voltage during deceleration (ovd)		-					
9: Over-voltage during constant speed (ovn)		-					
10: Over-voltage at stop (ovS)		-					
11: Low-voltage during acceleration (LvA)		-					
12: Low-voltage during deceleration (Lvd)		-					
13: Low-voltage during constant speed (Lvn)		\bullet					
14: Stop mid-low voltage (LvS)		-					
15: Phase loss protection (OrP)		-					
16: IGBT over-heat (oH1)			-				
17: Capacitance over-heat (oH 2)			\bullet				
18: tH1o (TH1 open)			\bullet				
19: tH2o (TH2 open)			-				
20: Reserved							
21: Drive over-load (oL)			-				
22: Electronics thermal relay 1 (EoL1)			\bullet				
23: Electronics thermal relay 2 (EoL2)			\bullet				
24: Motor PTC overheat (oH3) (PTC)			\bullet				
25: Reserved							
26: Over-torque 1 (ot1)			\bullet				
27: Over-torque 2 (ot2)			-				
28: Low current (uC)	-						
29: Reserved							
30: Memory write-in error (cF1)				\bullet			
31: Memory read-out error (cF2)				\bullet			
32: Reserved							
33: U-phase current detection error (cd1)				-			
34: V-phase current detection error (cd2)				-			
35: W-phase current detection error (cd3)				-			
36: Clamp current detection error (Hd0)				\bullet			
37: Over-current detection error (Hd1)				\bullet			
38: Over-voltage detection error (Hd2)				\bullet			
39: occ IGBT short circuit detection error (Hd3)				\bullet			

Fault Code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
40: Auto tuning error (AUE)				-			
41: PID feedback loss (AFE)					-		
42: PG feedback error (PGF1)					-		
43: PG feedback loss (PGF2)					-		
44: PG feedback stall (PGF3)					-		
45: PG slip error (PGF4)					-		
46: Reserved							
47: Reserved							
48: Analog current input loss (ACE)					-		
49: External fault input (EF)						-	
50: Emergency stop (EF1)						-	
51: External Base Block (bb)						-	
52: Password error (PcodE)				-			
53: Reserved							
54: Communication error (CE1)							-
55: Communication error (CE2)							-
56: Communication error (CE3)							-
57: Communication error (CE4)							\bullet
58: Communication Time-out (CE10)							-
59: Reserved							
60: Brake transistor error (bF)						-	
61: Y-connection/ \triangle-connection switch error (ydc)						-	
62: Decel. Energy Backup Error (dEb)		\bullet					
63: Slip error (oSL)						-	
64: Electromagnet switch error (ryF)						\bullet	
65 : PG Card Error (PGF5)						\bullet	
66-78: Reserved							
79: U phase over current (Uocc)	\bullet						
80: V phase over current (Vocc)	-						
81: W phase over current (Wocc)	-						
82: OPHL U phase output phase loss	\bullet						
83: OPHL Vphase output phase loss	\bullet						
84: OPHL Wphase output phase loss	\bullet						
85~100: Reserved							
101: CGdE CANopen software disconnect1							-
102: CHbE CANopen software disconnect2							\bullet
103: CSYE CANopen synchronous error							-

Fault Code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
104: CbFE CANopen hardware disconnect							\bullet
105: CIdE CANopen index setting error							\bullet
106: CAdE CANopen slave station number setting error							\bullet
107: CFrE CANopen index setting exceed limit						\bullet	
108~110: Reserved 111: lnrCOM Internal communication overtime error				\bullet			

196-29 PTC (Positive Temperature Coefficient) Detection Selection

Factory Setting: 0
Settings 0: Warn and keep operating
1: Warn and ramp to stop
2: Warn and coast to stop
3: No warning
(1) Pr.06-29 setting defines how the will drive operate after PTC detection.

76-30
 PTC Level

Factory Setting: 50.0
Settings 0.0~100.0\%
If It needs to set AVI/ACI/AUI analog input function Pr.03-00~03-02 to 6 (P.T.C. thermistor input value).
1 It is used to set the PTC level, and the corresponding value for 100% is max. analog input value.

156-3: Frequency Command for Malfunction

Factory Setting: Read only
Settings $0.00 \sim 655.35 \mathrm{~Hz}$
10 When malfunction occurs, use can check the frequency command. If it happens again, it will overwrite the previous record.

55-90 Output Frequency at Malfunction

Factory Setting: Read only
Settings $\quad 0.00 \sim 655.35 \mathrm{~Hz}$
\square When malfunction occurs, use can check the current frequency command. If it happens again, it will overwrite the previous record.

15-3 9 Output Voltage at Malfunction

Factory Setting: Read only
Settings $0.0 \sim 6553.5 \mathrm{~V}$
11 When malfunction occurs, user can check current output voltage. If it happens again, it will overwrite the previous record.

DC Voltage at Malfunction

Settings $0.0 \sim 6553.5 \mathrm{~V}$
1 When malfunction occurs, user can check the current DC voltage. If it happens again, it will overwrite the previous record.

56-35 Output Current at Malfunction

Factory Setting: Read only
Settings 0.00~655.35Amp
10 When malfunction occurs, user can check the current output current. If it happens again, it will overwrite the previous record.

56-36 IGBT Temperature at Malfunction

Factory Setting: Read only
Settings $0.0 \sim 6553.5^{\circ} \mathrm{C}$
[1] When malfunction occurs, user can check the current IGBT temperature. If it happens again, it will overwrite the previous record.

196-37Capacitance Temperature at Malfunction

Factory Setting: Read only
Settings $0.0 \sim 6553.5^{\circ} \mathrm{C}$
1 When malfunction occurs, user can check the current capacitance temperature. If it happens again, it will overwrite the previous record.

76-38
 Motor Speed in rpm at Malfunction

Factory Setting: Read only
Settings $\quad 0.0 \sim 6553.5^{\circ} \mathrm{C}$
[1] When malfunction occurs, user can check the current motor speed in rpm. If it happens again, it will overwrite the previous record.

96-35 Torque Command at Malfunction

Factory Setting: Read only
Settings 0~65535
When malfunction occurs, user can check the current torque command. If it happens again, it will overwrite the previous record.

Settings 0000h~FFFFh

Settings 0000h~FFFFh
1 When malfunction occurs, user can check the status of multi-function input/output terminals. If it happens again, it will overwrite the previous record.

Factory Setting: Read only
Settings 0000H~FFFFh
1 When malfunction occurs, please check the drive status (communication address 2119H). If malfunction happens again, the previous record will be overwritten by this parameter.

56-43
 Reserved
 Reserved

Treatment to Output Phase Loss Detection (OPHL)
Factory Setting: 3
Settings 0: Warn and keep operating
1: Warn and ramp to stop
2: Warn and coast to stop
3: No warning
[1] Pr.06-45 defines how the drive will operates when output phase loss occur.

Factory Setting:0.500
Settings $\quad 0.000 \sim 65.535 \mathrm{sec}$

* $96-47$ Current Bandwidth

Factory Setting:1.00
Settings 0.00~100.00\%

76-48 DC Brake Time of Output Phase Loss
Factory Setting:0.000
Settings $0.000 \sim 65.535 \mathrm{sec}$

Reserved

75-57 Time for Input Phase Loss Detection
Factory Setting:0.20
Settings $0.00 \sim 600.00 \mathrm{sec}$

Reserved

Treatment for the detected Input Phase Loss (OrP)
Factory Setting: 0
Settings 0: warn, ramp to stop
1: warn, coast to stop
Over ripple protection

55-54 Reserved

175-55 Derating Protection

Factory Setting: 0
Settings 0: constant rated current and limit carrier wave by load current and temperature
1: constant carrier frequency and limit load current by setting carrier wave
2: constant rated current(same as setting 0), but close current limit
1 Setting 0:
When the rated current is constant, carrier frequency (Fc) outputted by PWM will auto decrease according to surrounding temperature, overload output current and time. If overload situation is not frequent and only cares the carrier frequency operated with the rated current for a long time and carrier wave changes during short overload, it is recommended to set to 0 .

Refer to the following diagram for the level of carrier frequency. Take VFD007CB43A-20 in normal duty as example, surrounding temperature 50 oC with independent installation and UL open-type. When the carrier frequency is set to 15 kHz , it corresponds to 72% rated output current. When it outputs higher than the value, it will auto decrease the carrier frequency. If the output is 83% rated current and the carrier frequency will decrease to 12 kHz . In addition, it will also decrease the carrier frequency when overload. When the carrier frequency is 15 kHz and the current is $120 \%{ }^{*} 72 \%=86 \%$ for a minute, the carrier frequency will decrease to the factory setting.
(1) Setting 1:

It is used for the fixed carrier frequency and prevents the carrier wave changes and motor noise caused by the surrounding temperature and frequent overload.

Refer to the following for the derating level of rated current. Take VFD007CB43A-20 in normal duty as example, when the carrier frequency keeps in 15 kHz and the rated current is decreased to 72%, it will have OL protection when the current is $120 \% * 72 \%=86 \%$ for a minute. Therefore, it needs to operate by the curve to keep the carrier frequency.
1 Setting 2:
It sets the protection method and action to 0 and disables the current limit for the Ratio*160\% of output current in the normal duty and Ratio* 180% of output current in the heavy duty. The advantage is that it can provide higher output current when the setting is higher than the factory setting of carrier frequency. The disadvantage is that it decreases carrier wave easily when overload.

Derating curve diagram in the heavy duty (Pr.00-16=1)

Pr.06-55 =1	Pr.06-55 =0 or 2
Pr.06-55 =0 or 2 ($50^{\circ} \mathrm{C}$: UL open-type) ($40^{\circ} \mathrm{C}$: UL type 1 or open type_size by size)	($40^{\circ} \mathrm{C}$: UL open-type) ($30^{\circ} \mathrm{C}$: UL type1 or open type_size by size)
460 V	460 V
230 V	230 V
Pr.06-55 =1 Pr.06-55 =0 or 2 ($50^{\circ} \mathrm{C}$: UL open-type) ($40^{\circ} \mathrm{C}$: UL type1 or open type_size by size)	Pr.06-55 =0 or 2 ($40^{\circ} \mathrm{C}$: UL open-type) ($30^{\circ} \mathrm{C}$: UL type1 or open type_size by size)

Derating curve diagram in the normal duty (Pr.00-16=0)

230V
Pr.06-55=0 or 2
($40^{\circ} \mathrm{C}$: UL open-type)
$\left(30^{\circ} \mathrm{C}\right.$: UL type1 or open type_size by size)

I \Rightarrow NOTE
※ The mounting clearances stated in the figure is for installing the drive in an open area. To install the drive in a confined space (such as cabinet or electric box), please follow the following three rules: (1) Keep the minimum mounting clearances. (2) Install a ventilation equipment or an air conditioner to keep surrounding temperature lower than operation temperature. (3) Refer to parameter setting and set up Pr. 00-16, Pr.00-17, and Pr. 06-55.
※ The following table shows heat dissipation and the required air volume when installing a single drive in a confined space. When installing multiple drives, the required air volume shall be multiplied by the number the drives.
※ Refer to the chart (Air flow rate for cooling) for ventilation equipment design and selection.
※ Refer to the chart (Power dissipation) for air conditioner design and selection.
Minimum mounting clearances:

Frame	$A(\mathrm{~mm})$	$B(\mathrm{~mm})$	$C(\mathrm{~mm})$	$D(\mathrm{~mm})$
$A \sim C$	60	30	10	0

Air flow rate for cooling			Power Dissipation		
Model No.	Flow Rate (cfm)	Flow Rate ($\mathrm{m}^{3} / \mathrm{hr}$)	Loss External (Heat sink)	Internal	Total
VFD004CB21A-20/-21/-21M	-	-	16	20	36
VFD007CB21A-20/-21/-21M	-	-	32	39	72
VFD015CB21A-20/-21/-21M	15	26	60	52	112
VFD022CB21A-20/-21/-21M	15	26	85	69	154
VFD004CB23A-20/-21/-21M	-	-	21	17	37
VFD007CB23A-20/-21/-21M	-	-	35	26	61
VFD015CB23A-20/-21/-21M	15	26	56	32	89
VFD022CB23A-20/-21/-21M	15	26	82	34	116
VFD037CB23A-20/-21/-21M	15	26	118	43	161
VFD007CB43A-20/-21/-21M	-	-	35	24	59
VFD015CB43A-20/-21/-21M	-	-	47	27	74
VFD022CB43A-20/-21/-21M	15	26	75	30	105
VFD037CB43A-20/-21/-21M	15	26	110	33	143
VFD040CB43A-20/-21/-21M	15	26	126	34	160
VFD055CB43A-20/-21/-21M	15	26	145	37	181
VFD075CB43A-20/-21/-21M	24	41	212	83	295
\% The required airflow shown in chat	hart is for insta	alling one	\% The heat diss	on shown in	is for

	drive in confined space．
※	When installing the multiple drives，the required air volume
should be the required air volume for single drive X the	
number of the drives．	

installing single drive in a confined space．
When installing multiple drives，volume of heat dissipation should be the heat dissipated for single drive X the number of the drives．
Heat dissipation for each model is calculated by rated voltage，current and default carrier．

Factory Setting： 60.0
Settings 0．0～6553．5 \％

$95-5 i$
 Software Detection GFF Filter Time

Factory Setting： 0.10
Settings $0.0 \sim 6553.5 \%$

96－62

Disable Level of dab
Factory Setting：180．0／360．0
Settings 230V series：0．0～220．0 Vic
460 V series： $0.0 \sim 440.0$ Vic

Fault Record 1 （min）
Fault Record 2 （min）
Fault Record 3 （min）
Fault Record 4 （min）
Fault Record 5 （min）
Fault Record 6 （min）
Factory Setting：Read only
Settings 0～64799 min
Ilal Pr．06－63 to Pr．06－68 are used to record the operation time for 6 malfunctions and it can also check if there is any wrong with the drive according to the internal time．
［a］When the malfunction occurs during operation，it records fault in Pr．06－17～06－22 and operation time is recorded in Pr．06－63～06－68．
For example：When the first fault ovA occurs after operation 3000 min．，second fault ovd occurs at 3482 min．，third fault ovA occurs at 4051 min．，fourth fault ocA at 5003 min．，fifth fault ocA at 5824 min．，sixth fault ocd occurs at 6402 min ．and seven fault ocS at 6951 min ．

It＇ll be recorded as the following table：

It will be recorded as the following table:

First fault	Pr.06-17 ovA

Pr.06-63 3000 ovA occurs at the 3000 min after operating.

Second fault	Pr.06-17	ovd
	Pr.06-18	ovA

Pr.06-63	3482	$3482-3000=482$ min ovd occurs at 482 min after last fault (ovA)
Pr.06-64	3000	

Third fault	Pr.06-17	ovA
	Pr.06-18	ovd
	Pr.06-19	ovA

Pr.06-63	4051	$4051-3482=569 \mathrm{~min}$ ovA occurs at 569 min after last fault (ovd)
Pr.06-64	3482	
Pr.06-65	3000	

Seven fault	Pr.06-17	ocS
	Pr.06-18	ocA
	Pr.06-19	ocA
	Pr.06-20	ovA
	Pr.06-21	ovd
	Pr.06-22	ovA

Pr.06-63	12	(12-5824)+64800=58988 min ocS occurs at 58988 min after last fault (ocA)
Pr.06-64	5824	
Pr.06-65	5003	
Pr.06-66	4051	
Pr.06-67	3482	
Pr.06-68	3000	

96-69

Time interval between errors occur (day)
Factory Setting: Read only
Settings Read only

Time interval between errors occur (minute)
Factory Setting: Read only
Settings Read only

Low Current Setting Level
Factory Setting: 0.0
Settings $0.0 \sim 6553.5 \%$

76-73

Low Current Detection Time
Factory Setting: 0.00
Settings $\quad 0.00 \sim 655.35 \mathrm{sec}$

Settings 0 : No function
1 : warn and coast to stop
2 : warn and ramp to stop by $2^{\text {nd }}$ deceleration time
3 : warn and operation continue
10.1 The drive will operate as the setting of Pr.06-73 when output current is lower than the setting of Pr.06-71 and when low current continues for a period longer than the setting of Pr.06-72. This parameter can also be used with external multi-function output terminal 44 (MO44) for low current output.

07 Special Parameters

This parameter can be set during operation.

Factory Setting: 380.0/760.0
Settings 230 V series: $350.0 \sim 450.0 \mathrm{Vdc}$
460 V series: 700.0~900.0Vdc
[1] This parameter sets the DC-bus voltage at which the brake chopper is activated. Users can choose the suitable brake resistor to have the best deceleration. Refer to Chapter 7 Accessories for the information of the brake resistor
\square It is only valid for the models below 30 kW of 460 series and 22 kW of 230 series.

197-9 DC Brake Current Level

Factory Setting: 0
Settings 0~100\%
11 This parameter sets the level of DC Brake Current output to the motor during start-up and stopping. When setting DC Brake Current, the Rated Current is regarded as 100%. It is recommended to start with a low DC Brake Current Level and then increase until proper holding torque has been attained.
[1] When it is in FOCPG/TQCPG mode, DC brake is zero-speed operation. It can enable DC brake function by setting to any value.

Factory Setting: 0.0
Settings $0.0 \sim 60.0 \mathrm{sec}$
110 The motor may be in the rotation status due to external force or itself inertia. If the drive is used with the motor at this moment, it may cause motor damage or drive protection due to over current. This parameter can be used to output DC current before motor operation to stop the motor and get a stable start. This parameter determines the duration of the DC Brake current after a RUN command. When it is set to 0.0 , it is invalid.

197-3DC Brake Time at Stop

Factory Setting: 0.00
Settings $0.0 \sim 60.00 \mathrm{sec}$
[1] The motor may be in the rotation status after drive stop outputting due to external force or itself inertia and can't stop accurately. This parameter can output DC current to force the motor drive stop after drive stops to make sure that the motor is stop.
1 This parameter determines the duration of the DC Brake current during stopping. To DC brake at stop, this function will be valid when Pr.00-22 is set to 0 or 2 . When setting to 0.0 , it is invalid.
[a] Related parameters: Pr.00-22 Stop Method, Pr.07-04 Start-point for DC Brake

77-74 Start-Point for DC Brake

Factory Setting: 0.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$

1 This parameter determines the frequency when DC Brake will begin during deceleration. When this setting is less than start frequency (Pr.01-09), the start-point for DC brake will start from the min. frequency.

11 DC Brake at Start-up is used for loads that may move before the AC drive starts, such as fans and pumps. Under such circumstances, DC Brake can be used to hold the load in position before setting it in motion.
[1] DC Brake at stop is used to shorten the stopping time and also to hold a stopped load in position, such as crane or cutting machine.
[10] DC Brake at Start-up is used for loads that may move before the AC drive starts, such as fans and pumps. Under such circumstances, DC Brake can be used to hold the load in position before setting it in motion.
\mathbb{I} DC Brake at stop is used to shorten the stopping time and also to hold a stopped load in position, such as crane or cutting machine.

79-95 Reserved

87-45

 Restart after Momentary Power LossFactory Setting: 0

Settings 0: Stop operation

1: Speed search for last frequency command
2: Speed search for the minimum output frequency
[a] This parameter determines the operation mode when the AC motor drive restarts from a momentary power loss.
[1] The power connected to the drive may power off momentarily due to many reasons. This function allows the drive to keep outputting after power is on again after power off and won't cause drive stops.
[4] Setting 1: Operation continues after momentary power loss, speed search starts with the Master Frequency reference value after drive output frequency and motor rotator speed is synchronous. The motor has the characteristics of big inertia and small obstruction. For example, in the equipment with big inertia wheel, it doesn't need to wait to execute operation command until wheel is complete stop after re-start to save time.
1 Setting 2: Operation continues after momentary power loss, speed search starts with the master frequency after drive output frequency and motor rotator speed is synchronous. The motor has the characteristics of small inertia and bigger obstruction.
[1] In PG control mode, the AC motor drive will execute the speed search function automatically by the PG speed when this setting isn't set to 0 .

Factory Setting: 2.0
Settings $0.1 \sim 20.0 \mathrm{sec}$
[0] If the duration of a power loss is less than this parameter setting, the AC motor drive will resume operation. If it exceeds the Maximum Allowable Power Loss Time, the AC motor drive output is then turned off (coast stop).
[1] The selected operation after power loss in Pr.07-06 is only executed when the maximum allowable power loss time is ≤ 5 seconds and the AC motor drive displays "LU".
But if the AC motor drive is powered off due to overload, even if the maximum allowable power loss time is ≤ 5 seconds, the operation mode as set in Pr.07-06 is not executed. In that case it starts up normally.

87-98

Base block Time

Factory Setting: 0.5

Settings $0.1 \sim 5.0 \mathrm{sec}$

1 When momentary power loss is detected, the AC drive will block its output and then wait for a specified period of time (determined by Pr.07-08, called Base-Block Time) before resuming operation. This parameter should be set at a value to ensure that any residual regeneration voltage from the motor on the output has disappeared before the drive is activated again.

B.B. Search with last output frequency downward timing chart

B.B. Search with minimum output frequency upward timing chart

B.B. Search with minimum output frequency upward timing chart

97-93 Current Limit for Speed Search

Factory Setting: 50
Settings 20~200\%
1 Following a momentary power loss, the AC motor drive will start its speed search operation only if the output current is greater than the value set by Pr.07-09.
[1] When executing speed search, the V/f curve is operated by group 1 setting. The maximum current for the optimum accel./decel. and start speed search is set by Pr.07-09.
[1] The speed search level will affect the synchronous time. It will get the synchronization faster when this parameter is set to larger value. But too large value may active overload protection.

87-10

Treatment to Reboots After Fault
Factory Setting: 0
Settings 0: Stop operation
1: Speed search starts with current speed
2: Speed search starts with minimum output frequency
[1] In PG control mode, the AC motor drive will execute the speed search function automatically by the PG speed when this setting isn't set to 0 .
[id Fault includes: bb,oc,ov,occ etc. To restart after oc, ov, occ, Pr.07-11 can not be set to 0 .

7 7- : : Auto Restart After Fault

Factory Setting: 0
Settings 0~10
[1] After fault (oc, ov, ov),occurs the AC motor drive can be reset/restarted automatically up to 10 times.
[1] Setting this parameter to 0 will disable the reset/restart operation after any fault has occurred. When enabled, the AC motor drive will restart with speed search, which starts at the frequency before the fault.
[1] If the drive execute reset/restart after fault more than the numbers of time set in Pr.07-11 and the limit is reached within the time period in Pr.07-33, the drive will stop execute reset/restart after fault function. User will be need to input RESET manually for the drive to continue operation.

17-13 Speed Search during Start-up

Factory Setting: 0
Settings 0: Disable
1: Speed search from maximum output frequency
2: Speed search from start-up motor frequency
3: Speed search from minimum output frequency
[1] This parameter is used for starting and stopping a motor with a high inertia. A motor with high inertia will take 2-5 minutes or longer to stop completely. By setting this parameter, the user does not need to wait for the motor to come to a complete stop before restarting the AC motor drive. If a PG card and encoder is used on the drive and motor, then the speed search will start from the speed that is detected by the encoder and accelerate quickly to the commanded frequency. The output current is set by the Pr.07-09.
[1] In PG control mode, the AC motor drive will execute the speed search function automatically by the PG speed when this setting isn't set to 0 .

77-13

Decel. Time at Momentary Power Loss (dEb function)
Factory Setting: 0
Settings 0: Disable
1: 1st decel. time
2: 2nd decel. time
3: 3rd decel. time
4: 4th decel. time
5: Current decel. time
6: Auto decel. time
ILD This parameter is used for the decel. time selection for momentary power loss.

77-14
 dEb Return Time

Factory Setting: 0.0
Settings $0.0 \sim 25.0 \mathrm{sec}$
\square function is the AC motor drive decelerates to stop after momentary power loss. When the momentary power loss occurs, this function can be used for the motor to decelerate to 0 speed with deceleration stop method. When the power is on again, motor will run again after DEB return time. (has applied on high-speed spindle)

Status 1: Insufficient power supply due to momentary power-loss/unstable power (due to low voltage)/sudden heavy-load

\square NOTE

When Pr.07-14 is set to 0 , the AC motor drive will be stopped and won't re-start at the power-on again.

Status 2: unexpected power off, such as momentary power loss

NOTE

For example, in textile machinery, you will hope that all the machines can be decelerated to stop to prevent broken stitching when power loss. In this case, the host controller will send a message to the AC motor drive to use dEb function with deceleration time via EF.

67-15
 Dwell Time at Accel.

Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{sec}$

17- ! 7 Dwell Time at Decel.

Factory Setting: 0.00
Settings $0.00 \sim 600.00 \mathrm{sec}$

87-18

Dwell Frequency at Decel.
Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
1 In the heavy load situation, Dwell can make stable output frequency temporarily, such as crane or elevator.
[0] Pr.07-15 to Pr.07-18 is for heavy load to prevent OV or OC occurs.

Dwell at accel./decel.

37-9

Fan Cooling Control
Factory Setting: 0
Settings 0: Fan always ON
1: 1 minute after the AC motor drive stops, fan will be OFF
2: When the AC motor drive runs, the fan is ON. When the AC motor drive stops, the fan is OFF
3: Fan turns ON when preliminary heat sink temperature (around $60^{\circ} \mathrm{C}$) is attained.
4: Fan always OFF
[0] This parameter is used for the fan control.
[1] Setting 0: Fan will be ON as the drive's power is turned ON.
(1) Setting 1: 1 minute after AC motor drive stops, fan will be OFF
\square Setting 2: AC motor drive runs and fan will be ON. AC motor drive stops and fan will be OFF.
1 Setting 3: Fan run according to IGBT and capacitance temperature. Fan will be ON when preliminary capacitance temperature is higher than 600 . Fan will be OFF, when capacitance temperature is lower than 40oC.
(1) Setting 4: Fan is always OFF

日i-2日

Emergency Stop (EF) \& Force Stop
Factory Setting: 0
Settings
0: Coast to stop
1: Stop by $1^{\text {st }}$ deceleration time
2: Stop by $2^{\text {nd }}$ deceleration time
3: Stop by $3^{\text {rd }}$ deceleration time

4: Stop by $4^{\text {th }}$ deceleration time
5: System Deceleration
6: Automatic Deceleration
[a] Pr.07-20 determines AC motor drive stop method. When the multi-function input terminal is set to 10 or 18 and is activated, the drive will stop according to the setting in Pr.07-20.

17-2 : Auto Energy-saving Operation

Factory Setting: 0

Settings	$0:$ Disable
	$1:$ Enable

[a] When Pr.07-21 is set to 1 , the acceleration and deceleration will operate with full voltage. During constant speed operation, it will auto calculate the best voltage value by the load power for the load. This function is not suitable for the ever-changing load or near full-load during operation.
When the output frequency is constant, i.e. constant operation, the output voltage will auto decrease by the load reduction. Therefore, the drive will operate with min. power, multiplication of voltage and current.

Factory Setting: 100
Settings 10~1000\%
[10] When Pr.00-19 is set to 1, this parameter can be used to adjust the gain of energy-saving. The factory setting is 100%. If the result is not good, it can adjust by decreasing the setting. If the motor oscillates, it should increase the setting.

Factory Setting: 0

Settings 0: Enable AVR
 1: Disable AVR
 2: Disable AVR during deceleration

[1] The rated voltage of the motor is usually $220 \mathrm{~V} / 200 \mathrm{VAC} 60 \mathrm{~Hz} / 50 \mathrm{~Hz}$ and the input voltage of the AC motor drive may vary between 180 V to $264 \mathrm{VAC} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$. Therefore, when the AC motor drive is used without AVR function, the output voltage will be the same as the input voltage. When the motor runs at voltages exceeding the rated voltage with $12 \%-20 \%$, its lifetime will be shorter and it can be damaged due to higher temperature, failing insulation and unstable torque output.
M AVR function automatically regulates the AC motor drive output voltage to the motor rated voltage.

For instance, if V/f curve is set at $200 \mathrm{VAC} / 50 \mathrm{~Hz}$ and the input voltage is at 200 V to 264 VAC , then the motor Output Voltage will automatically be reduced to a maximum of $200 \mathrm{VAC} / 50 \mathrm{~Hz}$. If the input voltage is at 180 V to 200 VAC , output voltage to motor and input power will be in direct proportion.

Qatting 0: when AVR function is enabled, the drive will calculate the output voltage by actual DC-bus voltage. The output voltage won't be changed by DC bus voltage.
[1] Setting 1: when AVR function is disabled, the drive will calculate the output voltage by DC-bus voltage. The output voltage will be changed by DC bus voltage. It may cause insufficient/over current.

1 Selting 2: the drive will disable the AVR during deceleration, such as operated from high speed to low speed.
[1] When the motor ramps to stop, the deceleration time is longer. When setting this parameter to 2 with auto acceleration/deceleration, the deceleration will be quicker.
When it is in FOCPG or TQCPG, it is recommended to set to 0 (enable AVR).

87-24

Filter Time of Torque Command (V/F and SVC control mode)
Factory Setting: 0.020
Settings $0.001 \sim 10.000 \mathrm{sec}$
1 When the setting is too long, the control will be stable but the control response will be delay. When the setting is too short, the response will be quickly but the control may be unstable. User can adjust the setting by the control and response situation.

77-25 Filter Time of Slip Compensation (V/F and SVC control mode)

Factory Setting: 0.100
Settings $0.001 \sim 10.000 \mathrm{sec}$
It] It can set Pr.05-22 and 05-23 to change the response time of compensation.
1 If Pr.05-22 and 05-23 are set to 10 seconds, the response time of compensation is the slowest. But the system may be unstable when the setting is too short.

77-36 Torque Compensation Gain (V/F and SVC control mode)

Factory Setting: 0
Settings 0~10
[10] When the motor load is large, a part of drive output voltage is absorbed by the resistor of stator winding and causes insufficient voltage at motor induction and result in over output current and insufficient output torque. It can auto adjust output voltage by the load and keep the air gap magnetic fields stable to get the optimal operation.
[l] In the V/F control, the voltage will be decreased in direct proportion when the frequency is decreased. It'll cause decrease torque at low speed due to small AC resistor and the same DC resistor. Therefore, Auto torque compensation function will increase the output voltage in the low frequency to get higher start torque.
When Pr.07-26 is set to large, it may cause motor overflux and result in too large output current, motor overheat or triggers protection function.

Factory Setting: 0.00
Settings 0.00~10.00
[ad The induction motor needs the constant slip to produce magnetic torque. It can be ignore in the higher motor speed, such as rated speed or 2-3\% slip.
[1] In the operation with variable frequency, the slip and the synchronous frequency will be in reverse proportion to produce the same magnetic torque. That is the slip will be larger with the reduction of synchronous frequency. The motor may stop when the synchronous frequency is decreased to a specific value. Therefore, the slip serious affects the accuracy of motor speed at low speed.
[al In another situation, when the drive uses with induction motor, the slip will be increased by the increasing load. It also affects the accuracy of motor speed.
1 This parameter can be used to set compensation frequency and reduce the slip to close the synchronous speed when the motor runs in the rated current to raise the drive accuracy. When the drive output current is larger than Pr.05-05 No-load Current of Induction Motor 1 (A), the drive will compensation the frequency by this parameter.
[1] When the control method (Pr.00-11) is changed from V/f mode to vector mode, this parameter will auto be set to 1.00 . Otherwise, it will be set to 0.00 . Please do the compensation of slip after overload and acceleration. The compensation value should be increased from small to large gradually. That is to add the output frequency with motor rated slip X Pr.07-27 Slip Compensation Gain when the motor is rated load. If the actual speed ratio is slow than expectation, please increase the setting. Otherwise, decrease the setting.

77-3日 Reserved

N 7-29 Slip Deviation Level

Factory Setting: 0
Settings 0~100.0\%
0: No detection
17-39
Detection Time of Slip Deviation
Factory Setting:1.0
Settings $0.0 \sim 10.0 \mathrm{sec}$

Factory Setting:0
Settings 0: Warn and keep operation
1: Warn and ramp to stop
2: Warn and coast to stop
3: No warning
[a] Pr.07-29 to Pr.07-31 are used to set allowable slip level/time and over slip treatment when the drive is running.

Motor Hunting Gain

Settings 0~10000
0: Disable
Ild The motor will have current wave motion in some specific area. It can improve this situation by setting this parameter. (When it is high frequency or run with PG, it can be set to 0 . when the current wave motion happens in the low frequency, please increase Pr.05-29.)

19 9-3 3 Recovery Time to Pr.07-11 (\# of automatic reboots after fault)

Factory Setting:60.0
Settings $0.0 \sim 6000.0 \mathrm{sec}$
[1] When a reset/restart after fault occurs, the drive will regards Pr.07-33 as a time boundary and beging counting the numbers of faults occur within this time period. Within the period, if numbers of faults occurred did not exceed the setting in Pr.07-11, the counting will be cleared and starts from 0 when next fault occurs. However, if the numbers of faults occurred within this time period have exceed the setting in Pr.07-11, user will need to press RESET key manually for the drive to operate again.

Input Terminal for PID Feedback
Factory Setting:0
Settings 0: No function
1: Negative PID feedback: input from external terminal AVI (Pr.03-00)
2: Reserved
3: Reserved
4: Positive PID feedback from external terminal AVI (Pr.03-00)
[1] Negative feedback means: +target value - feedback. It is used for the detection value will be increased by increasing the output frequency.
[al Positive feedback means: -target value + feedback. It is used for the detection value will be decreased by increasing the output frequency.

Common applications for PID control

■ Flow control: A flow sensor is used to feedback the flow data and performs accurate flow control.
■ Pressure control: A pressure sensor is used to feedback the pressure data and performs precise pressure control.

च Air volume control: An air volume sensor is used to feedback the air volume data to have excellent air volume regulation.
\square Temperature control: A thermocouple or thermistor is used to feedback temperature data for comfortable temperature control.
\square Speed control: A speed sensor or encoder is used to feedback motor shaft speed or input another machines speed as a target value for closed loop speed control of master-slave operation. Pr. 10.00 sets the PID set point source (target value).
■ PID control operates with the feedback signal as set by Pr. 10.01 either $0 \sim+10 \mathrm{~V}$ voltage or 4-20mA current.
@ PID control loop:

[a] Concept of PID control

1. Proportional gain (P) :
the output is proportional to input. With only proportional gain control, there will always be a steady-state error.
2. Integral time(I):
the controller output is proportional to the integral of the controller input. To eliminate the
steady-state error, an "integral part" needs to be added to the controller. The integral time decides the relation between integral part and error. The integral part will be increased by time even if the error is small. It gradually increases the controller output to eliminate the error until it is 0 . In this way a system can be stable without steady-state error by proportional gain control and integral time control.
3. Differential control(D):
the controller output is proportional to the differential of the controller input. During elimination of the error, oscillation or instability may occur. The differential control can be used to suppress these effects by acting before the error. That is, when the error is near 0 , the differential control should be 0. Proportional gain(P) + differential control(D) can be used to improve the system state during PID adjustment.
[a] When PID control is used in a constant pressure pump feedback application:
Set the application's constant pressure value (bar) to be the set point of PID control. The pressure sensor will send the actual value as PID feedback value. After comparing the PID set point and PID feedback, there will be an error. Thus, the PID controller needs to calculate the output by using proportional gain(P), integral time(I) and differential time(D) to control the pump. It controls the drive to have different pump speed and achieves constant pressure control by using a 4-20mA signal corresponding to $0-10$ bar as feedback to the drive.

4. Pr.00-04 is set to 10 (Display PID analog feedback signal value (b) (\%))
5. Pr.01-12 Acceleration Time will be set as required
6. Pr.01-13 Deceleration Time will be set as required
7. Pr. $00-21=0$ to operate from the digital keypad
8. Pr. $00-20=0$, the set point is controlled by the digital keypad
9. Pr.08-00=1 (Negative PID feedback from analog input)
10. ACI analog input Pr. 03-01 set to 5, PID feedback signal.
11. Pr.08-01-08-03 will be set as required
8.1 If there is no vibration in the system, increase Pr.08-01(Proportional Gain (P))
8.2 If there is no vibration in the system, reduce Pr.08-02(Integral Time (I))
8.3 If there is no vibration in the system, increase Pr.08-03(Differential Time(D))
[]] Refer to Pr.08-00 to 08-21 for PID parameters settings.

88-8 : Proportional Gain (P)

- It is used to eliminate the system error. It is usually used to decrease the error and get the faster response speed. But if setting too large value in Pr.08-01, it may cause the system oscillation and instability.

■ If the other two gains (I and D) are set to zero, proportional control is the only one effective.

日8-9 Integral Time (1)

Factory Setting:1.00

$$
\begin{array}{ll}
\text { Settings } & 0.00 \sim 100.00 \mathrm{sec} \\
& 0.00: \text { Disable }
\end{array}
$$

[a] The integral controller is used to eliminate the error during stable system. The integral control doesn't stop working until error is 0 . The integral is acted by the integral time. The smaller integral time is set, the stronger integral action will be. It is helpful to reduce overshoot and oscillation to make a stable system. At this moment, the decreasing error will be slow. The integral control is often used with other two controls to become PI controller or PID controller.
[1] This parameter is used to set the integral time of I controller. When the integral time is long, it will have small gain of I controller, the slower response and bad external control. When the integral time is short, it will have large gain of I controller, the faster response and rapid external control.
\square When the integral time is too small, it may cause system oscillation.
[1] If the integral time is set as 0.00 , Pr.08-02 will be disabled.

日8-93 Derivative Control (D)

Factory Setting:0.00
Settings $0.00 \sim 1.00 \mathrm{sec}$
[ad The differential controller is used to show the change of system error and it is helpful to preview the change of error. So the differential controller can be used to eliminate the error to improve system state. With the suitable differential time, it can reduce overshoot and shorten adjustment time. However, the differential operation will increase the noise interference. Please note that too large differential will cause big noise interference. Besides, the differential shows the change and the output of the differential will be 0 when there is no change. Therefore, the differential control can't be used independently. It needs to be used with other two controllers to make a PD controller or PID controller.
[1] This parameter can be used to set the gain of D controller to decide the response of error change. The suitable differential time can reduce the overshoot of P and I controller to decrease the oscillation and have a stable system. But too long differential time may cause system oscillation.
1 The differential controller acts for the change of error and can't reduce the interference. It is not recommended to use this function in the serious interference.

Settings 0.0~100.0\%
[1] This parameter defines an upper bound or limit for the integral gain (I) and therefore limits the Master Frequency. The formula is: Integral upper bound = Maximum Output Frequency (Pr.01-00)
x (Pr.08-04 \%).
[1] Too large integral value will make the slow response due to sudden load change. In this way, it may cause motor stall or machine damage.

58-55 PID Output Frequency Limit

Factory Setting:100.0
Settings 0.0~110.0\%
$1 \mathbb{1}$ This parameter defines the percentage of output frequency limit during the PID control. The formula is Output Frequency Limit = Maximum Output Frequency (Pr.01-00) X Pr.08-05 \%.

58-96 Reserved

Factory Setting: 0.0
Settings $0.0 \sim 35.0 \mathrm{sec}$

Factory Setting: 0

Settings 0: Serial connection

1: Parallel connection
\square Pr.08-07 determines the primary low pass filter time when in PID control. Setting a large time constant may slow down the response rate of drive.
1 Output frequency of PID control will filter by primary low pass function. This function could filtering a mix frequencies. A long primary low pass time means filter degree is high and vice versa.
1 Inappropriate setting of delay time may cause system error.
[1] PI Control: controlled by the P action only, and thus, the deviation cannot be eliminated entirely. To eliminate residual deviations, the $P+I$ control will generally be utilized. And when the PI control is utilized, it could eliminate the deviation incurred by the targeted value changes and the constant external interferences. However, if the I action is excessively powerful, it will delay the responding toward the swift variation. The P action could be used solely on the loading system that possesses the integral components.
[1] PD Control: when deviation occurred, the system will immediately generate some operation load that is greater than the load generated single handedly by the D action to restrain the increment of the deviation. If the deviation is small, the effectiveness of the P action will be decreasing as well. The control objects include occasions with integral component loads, which are controlled by the P action only, and sometimes, if the integral component is functioning, the whole system will be vibrating. On such occasions, in order to make the P action's vibration subsiding and the system stabilizing, the PD control could be utilized. In other words, this control is good for use with loadings of no brake functions over the processes.
$1 \mathbb{1}$ PID Control: Utilize the I action to eliminate the deviation and the D action to restrain the vibration, thereafter, combine with the P action to construct the PID control. Use of the PID method could obtain a control process with no deviations, high accuracies and a stable system.
[1] Serial connection
Parallel connection

-88-48

Feedback Signal Detection Time
Factory Setting: 0.0
Settings $0.0 \sim 3600.0 \mathrm{sec}$
\ldots Pr.08-08 is valid only if the feedback signal is ACI.This parameter sets the detection time of abnormal PID derative. If detection time is set to 0.0 , detection function is disabled.

Settings 0: Warn and keep operation
1: Warn and ramp to stop
2: Warn and coast to stop
3: Warn and operate at last frequency
(1]) This parameter is valid only when the feedback signal is ACI.
(1) AC motor drive acts when the feedback signals (analog PID feedback or PG (encoder) feedback) are abnormal.

78-19
 Sleep Frequency

Factory Setting: 0.00
Settings Pr.08-18=0: 0.00~600.00Hz
Pr.08-18=1: 0.00~200.00\%
M8- ! ? Wake-up Frequency
Factory Setting: 0.00
Settings Pr.08-18=0: 0.00~600.00Hz
Pr.08-18=1: 0.00~200.00\%

Factory Setting: 0.0
Settings $0.00 \sim 6000.0 \mathrm{sec}$
(1) If the command frequency falls below the sleep frequency, for the specified time in Pr. 08-12, then the drive will shut off the output and wait until the command frequency rises above Pr.08-11.

88-:3

PID Deviation Level
Factory Setting: 10.0
Settings 1.0~50.0\%
N M昌
Factory Setting: 5.0
Settings $0.1 \sim 300.0 \mathrm{sec}$

Factory Setting: 5.0
Settings $0.1 \sim 300.0 \mathrm{sec}$
1 When the PID control function is normal, it should calculate within a period of time and close to the setpoint value.
1 Refer to the PID control diagram for details. When executing PID feedback control, if |PID reference target value - detection value| > Pr.08-13 PID Deviation Level and exceeds Pr.08-14
setting, the PID control fault occurs. The treatment will be done as Pr.08-09 setting.

58- 5 PID Compensation Selection

Factory Setting: 0

Settings	$0:$ Parameter setting
	$1:$ Reserved

日8- : 7 PID Compensation

Factory Setting: 0
Settings -100.0~+100.0\%

88-18

Setting of Sleep Mode Function
Factory Setting: 0
Settings 0: Follow PID output command
1: Follow PID feedback signal
Wake-up Integral Limit
Factory Setting: 50.0
Settings 0.0~200.0\%
©al The upper limit when the VFD is at sleep mode to avoid running at high speed right after being waken up.
There are three types of Sleep mode and Wakeup mode.

01: Frequency command(Not using PID, Pr08-00=0)

Output Frequency \leqq Sleep Frequency, the drive goes to Sleep mode, 0 Hz .

02: Internal PID Frequency Calculation Command (Not using PID, Pr08 $=0$)

When arriving at the sleep frequency, the system starts to calculating sleep time and the output frequency starts to decrease. If it passes the preset sleep time, the system will go to seelp at 0 Hz .

If the system is not yet reaching the preset sleep time, (if there is a preset) or will stay at Pr01-07, waiting to reach the sleep time then go to sleep at 0 Hz .

03: Percentage of PID's Target Value (Set PID, Pr08-00 $\neq 0$)

When reaching the percentage of PID's Target Value and the percentage of the feedback value, the system.
Starts to calculate the sleep time. The output frequency decreases immediately. If the system passes the preset sleep time, it will go to sleep at 0 Hz . However, if it doesn't reach the preset sleep time, it will remain at Pr01-11 (if there is a preset value) or Pr01-07 waiting to reach the sleep tiem then go to sleep at 0 Hz .

1 Enable or disable the Sleep and Wakeup functions depends on the setting of Pr08-10. When Pr08-10=0, it means Disable, while Pr08-10 $=0$, it means Enable.

18-2 : Enable PID to Change the Operation Direction

Factory Setting: 0
Settings 0: Disable change of direction
1: Enable change of direction

09 Communication Parameters

Modbus RS－485
Pin 1～2，7，8：Reserved
Pin 3，6：GND
Pin 4：SG－
Pin 5：SG＋

Factory Setting： 1
Settings 1～254
［1］If the AC motor drive is controlled by RS－485 serial communication，the communication address for this drive must be set via this parameter．And the communication address for each AC motor drive must be different and unique．

COM1 Transmission Speed
Factory Setting： 19.2
Settings $4.8 \sim 115.2 \mathrm{Kbps}$
1 This parameter is used to set the transmission speed between the RS485 master（PLC，PC，etc．） and $A C$ motor drive．

日（130 COM1 Transmission Fault Treatment

Factory Setting： 3
Settings 0：Warn and keep operation
1：Warn and ramp to stop
2：Warn and coast to stop
3：No warning and continue operation
＠This parameter is set to how to react if transmission errors occur．

89－43

COM1 Time－out Detection
Factory Setting： 0.0
Settings $0.0 \sim 100.0 \mathrm{sec}$
0．0：Disable
Ila It is used to set the transmission time between communication and keypad．

78－94 COM1 Communication Protocol

Factory Setting： 13
Settings 1：7，N， 2 for ASCII
2：7，E， 1 for ASCII
3：7，O， 1 for ASCII
4：7，E， 2 for ASCII
5：7，O， 2 for ASCII
6：8，N， 1 for ASCII
7：8，N， 2 for ASCII
8：8，E， 1 for ASCII

> 9: 8, O, 1 for ASCII
> 10: $8, \mathrm{E}, 2$ for ASCII
> 11: 8, O, 2 for ASCII
> 12: $8, \mathrm{~N}, 1$ for RTU
> 13: $8, \mathrm{~N}, 2$ for RTU
> 14: $8, \mathrm{E}, 1$ for RTU
> 15: $8, \mathrm{O}, 1$ for RTU
> 16: $8, \mathrm{E}, 2$ for RTU
> 17: $8, \mathrm{O}, 2$ for RTU

■ Control by PC or PLC (Computer Link)
1 A VFD-C2000 can be set up to communicate on Modbus networks using one of the following modes: ASCII (American Standard Code for Information Interchange) or RTU (Remote Terminal Unit).Users can select the desired mode along with the RS-485 serial port communication protocol in Pr.09-00.
[1] MODBUS ASCII (American Standard Code for Information Interchange) : Each byte data is the combination of two ASCII characters. For example, a 1-byte data: 64 Hex, shown as '64' in ASCII, consists of ' 6 ' (36Hex) and '4’ (34Hex).

1. Code Description

Communication protocol is in hexadecimal, ASCII: " 0 ", " 9 ", "A", " F ", every 16 hexadecimal represent ASCII code. For example:

Character	'0'	'1'	'2'	'3'	'4'	‘5’	'6'	'7’
ASCII code	30 H	31H	32H	33 H	34H	35H	36H	37H

Character	'8'	'9'	'A'	'B'	'C'	'D'	'E'	'F'
ASCII code	38 H	39 H	41 H	42 H	43 H	44 H	45 H	46 H

[1] Data Format
10-bit character frame (For ASCII):
(7, N , 2)

(7, E, 1)

(7, O, 1)

Start bit	0	1	2	3	4	5	6	Odd parity	Stop bit
			7-data bits 0 -bits character frame						

11-bit character frame (For RTU):

2. Communication Protocol

Communication Data Frame: ASCII mode

STX	Start character = ' ${ }^{\prime}$ ' (3AH)
Address Hi	Communication address: 8 -bit address consists of 2 ASCII codes
Address Lo	
Function Hi	Command code: 8 -bit command consists of 2 ASCII codes
Function Lo	
DATA (n-1)	Contents of data: Nx8-bit data consist of 2 n ASCII codes $\mathrm{n}<=16$, maximum of 32 ASCII codes
......	
DATA 0	
LRC CHK Hi	LRC check sum: 8 -bit check sum consists of 2 ASCII codes
LRC CHK Lo	
END Hi	End characters:END1 = CR (0DH), END0= LF(0AH)
END Lo	

Communication Data Frame: RTU mode

START	A silent interval of more than 10 ms
Address	Communication address: 8-bit address
Function	Command code: 8-bit command

DATA $(\mathrm{n}-1)$	Contents of data: $\mathrm{n} \times 8$-bit data, $\mathrm{n}<=16$
$\ldots \ldots$.	
DATA 0	CRC check sum:
CRC CHK Low	16 -bit check sum consists of 28 -bit characters
CRC CHK High	A silent interval of more than 10 ms
END	

Address (Communication Address)

Valid communication addresses are in the range of 0 to 254 . A communication address equal to 0 , means broadcast to all AC drives (AMD). In this case, the AMD will not reply any message to the master device.
00H: broadcast to all AC drives
01H: AC drive of address 01
OFH: AC drive of address 15
10H: AC drive of address 16
:
FEH: AC drive of address 254

Function (Function code) and DATA (data characters)

The format of data characters depends on the function code.
03H: read data from register
06H: write single register
Example: reading continuous 2 data from register address 2102 H , AMD address is 01 H . ASCII mode:

Command Message:

STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'3'
Starting address	'2'
	'1'
	'0'
	'2'
Number of data (count by word)	'0'
	'0'
	'0'
	'2'
LRC Check	'D'
	'7'
END	CR
	LF

Response Message	
Address	
	'1'
Function	'0'
	'3'
Number of data (count by byte)	'0'
	'4'
Content of starting address 2102H	'1'
	'7'
	'7'
	'0'
Content of address 2103H	'0'
	'0'
	'0'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

RTU mode:

Command Message:

Address	01 H
Function	03 H
Starting data address	21 H
	02 H
Number of data	
(count by world)	00 H
	02 H

Response Message

Address	01 H
Function	03 H
Number of data (count by byte)	04 H
Content of data address 2102 H	17 H
	70 H

CRC CHK Low	6FH	Content of data	00H
CRC CHK High	F7H	address 2103H	00H
CRC CHK Low FEH CRC CHK High			

06 H : single write, write single data to register.
Example: writing data $6000(1770 \mathrm{H})$ to register 0100 H . AMD address is 01 H .
ASCII mode:

Command Message:

STX	\because
Address	'0'
	'1'
Function	'0'
	'6'
Data address	'0'
	'1'
	'0'
	'0'
Data content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'6'
Data address	'0'
	'1'
	'0'
	'0'
Data content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

RTU mode:
Command Message:

Address	01 H
Function	06 H
Data address	01 H
	00 H
Data content	17 H
	70 H
CRC CHK High	86 H
	22 H

Response Message	
Address	01 H
Function	06 H
Data address	01 H
	00 H
Data content	17 H
	70 H
CRC CHK High	86 H
	22 H

10 H : write multiple registers (write multiple data to registers)
Example: Set the multi-step speed,
Pr. $04-00=50.00(1388 \mathrm{H})$, $\operatorname{Pr} .04-01=40.00$ (0 FAOH). AC drive address is 01 H .
ASCII Mode

Command Message:

STX	'
ADR 1	'0'
ADR 0	'1'
CMD 1	'1'
CMD 0	'0'
Starting data address	'0'
	'5'
	'0'
	'0'
Number of data (count by word)	'0'
	'0'
	'0'
	'2'

Response Message

STX	'
ADR 1	'0'
ADR 0	'1'
CMD 1	'1'
CMD 0	'0'
Starting data address	'0'
	'5'
	'0'
	'0'
Number of data (count by word)	'0'
	'0'
	'0'
	'2'

Number of data (count by byte)	'0'	LRC Check	'E'
	'4'		'8'
The first data content	'1'	END	CR
	'3'		LF
	'8'		
	'8'		
The second data content	'0'		
	'F'		
	'A'		
	'0'		
LRC Check	'9'		
	'A'		
END	CR		
	LF		

RTU mode:
Command Message:
Response Message

ADR	01 H
CMD	10 H
Starting data address	05 H
Number of data	00 H
(count by word)	00 H
Number of data	02 H
(count by byte)	04
The first data content	13 H
The second data content	88 H
CRC Check Low	AFH
CRC Check High	AOH

ADR	01 H
CMD 1	10 H
Starting data address	05 H
Number of data	00 H
(count by word)	00 H
CRC Check Low	02 H
CRC Check High	01 H

Check sum
ASCII mode:
LRC (Longitudinal Redundancy Check) is calculated by summing up, module 256, and the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.
For example,
$01 \mathrm{H}+03 \mathrm{H}+21 \mathrm{H}+02 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=29 \mathrm{H}$, the 2 's-complement negation of 29 H is $\underline{\mathrm{D} 7} \mathrm{H}$.
RTU mode:
CRC (Cyclical Redundancy Check) is calculated by the following steps:

Step 1:

Load a 16-bit register (called CRC register) with FFFFH.
Step 2:
Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.

Step 3:

Examine the LSB of CRC register.

Step 4:

If the LSB of CRC register is 0 , shift the CRC register one bit to the right with MSB zero filling, then repeat step 3. If the LSB of CRC register is 1, shift the CRC register one bit to the right with MSB zero filling, Exclusive OR the CRC register with the polynomial value A001H, then repeat step 3 .

Step 5:

Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete 8 -bit byte will have been processed.

Step 6:

Repeat step 2 to 5 for the next 8 -bit byte of the command message. Continue doing this until all bytes have been processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, i.e. the lower order byte will be transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:

Unsigned char* data \leftarrow a pointer to the message buffer
Unsigned char length \leftarrow the quantity of bytes in the message buffer
The function returns the CRC value as a type of unsigned integer.
Unsigned int crc_chk(unsigned char* data, unsigned char length)

```
    {
```

 int j;
 unsigned int reg_crc=0Xffff;
 while(length--)\{
 reg_crc \({ }^{\wedge=}\) *data++;
 for(\(\mathrm{j}=0 ; \mathrm{j}<8 ; \mathrm{j}++\))
 if(reg_crc \& 0x01)\{ /* LSB(b0)=1 */
 reg_crc=(reg_crc>>1) ^ 0Xa001;
 \}else\{
 reg_crc=reg_crc >>1;
 \}
 \}
 \}
return reg_crc; // return register CRC
3. Address list

Content	Address	Function
AC drive Parameters	GGnnH	GG means parameter group, nn means parameter number, for example, the address of $\operatorname{Pr} 4-01$ is 0401H.
Command	O: No function Write only	2000 H
		Bit 0-3 1: Stop 2: Run 3: Jog + Run

Content	Address	Function
	2103H	Output frequency (H)
	2104 H	Output current (AXX.X.X)
	2105H	DC-BUS Voltage (UXXX.X)
	2106 H	Output voltage (EXXX.X)
	2107H	Current step number of Multi-Step Speed Operation
	2108 H	Reserved
	2109 H	Counter value
	210AH	Power Factor Angle (XXX.X)
	210BH	Output Torque (\%)
	210 CH	Actual motor speed (rpm)
	210DH	Number of PG feed back pulses
	210FH	Power output (X.XXX)
	2116H	Multi-function display (Pr.00-04)
	211BH	Max. opeartion frequency (Pr.01-00) or Max. user defined value (Pr.00-26)
	2200 H	Display output current (A)
	2201 H	Display counter value of TRG terminal (c)
	2202 H	Display actual output frequency (H)
	2203 H	Display DC-BUS voltage (u)
	2204 H	Display output voltage of U, V, W (E)
	2205 H	Display output power angle of U, V, W (n)
	2206 H	Display actual motor speed kW of U, V, W (P)
	2207H	Display motor speed in rpm estimated by the drive or encoder feedback (r00: positive speed, -00: negative speed)
	2208H	Display positive/negative output torque in \%, estimated by the drive (t 0.0 : positive torque, -0.0 : negative torque)
	220 AH	Display PID feedback value after enabling PID function in \% (b)
	220BH	Display signal of AVI analog input terminal, 0-10V corresponds to 0-100\% (1.)
	220 CH	Display signal of ACl analog input terminal, 4-V20mA/0-10V corresponds to 0-100\% (2.)
	220DH	Display signal of AUI analog input terminal, -10V~10V corresponds to -100~100\% (3.)
	220EH	Display the IGBT temperature of drive power module in ${ }^{\circ} \mathrm{C}$ (c.)
	220FH	Display the temperature of capacitance in ${ }^{\circ} \mathrm{C}$ (i.)
	2210 H	The status of digital input (ON/OFF), refer to Pr.02-12
	2211 H	The status of digital output (ON/OFF), refer to Pr.02-18
	2212 H	Display the multi-step speed that is executing (S)
	2213 H	The corresponding CPU pin status of digital input (d.)
	2214 H	The corresponding CPU pin status of digital output (O.)
	2218 H	Position command tracing error (P.)
	2219 H	Display times of counter overload (0.00~100.00\%)
	221 AH	Display GFF in \% (G.)
	221BH	Display DCbus voltage ripples (Unit: Vdc) (r.)
	221 CH	Display PLC register D1043 data (C)
	221DH	Display Pole of Permanent Magnet Motor
	221EH	User page displays the value in physical measure
	221FH	Output Value of Pr.00-05
	2222 H	Fan speed of the drive
	2223 H	Control mode of the drive 0: speed mode 1: torque mode
	2224 H	Carrier frequency of the drive

4. Exception response:

The AC motor drive is expected to return a normal response after receiving command messages from the master device. The following depicts the conditions when no normal response is replied to the master device.

The AC motor drive does not receive the messages due to a communication error; thus, the AC motor drive has no response. The master device will eventually process a timeout condition.
The AC motor drive receives the messages without a communication error, but cannot handle them. An exception response will be returned to the master device and an error message "CExx" will be displayed on the keypad of AC motor drive. The xx of "CExx" is a decimal code equal to the exception code that is described below.
In the exception response, the most significant bit of the original command code is set to 1 , and an exception code which explains the condition that caused the exception is returned.

Example:
ASCII mode:
RTU mode:

STX	' ${ }^{\prime}$	Address	01H
Address	'0'	Function	86H
	'1'	Exception code	02H
Function	'8'	CRC CHK Low	C3H
	'6'	CRC CHK High	A1H
Exception code	'0'		
	'2'		
LRC CHK	'7'		
	'7'		
END	CR		
	LF		

The explanation of exception codes:

Exception code	\quad Explanation
1	Illegal data value: The data value received in the command message is not available for the AC drive.
2	Illegal data address: The data address received in the command message is not available for the AC motor drive.
3	Parameters are locked: parameters can't be changed
4	Parameters can't be changed during operation
10	Communication time-out.

59-95

Reserved

98-98

93-93 Response Delay Time

Factory Setting: 2.0
Settings $0.0 \sim 200.0 \mathrm{~ms}$
[1] This parameter is the response delay time after AC drive receives communication command as shown in the following.

Main Frequency of the Communication

Settings $0.00 \sim 600.00 \mathrm{~Hz}$
[a] When Pr.00-20 is set to 1 (RS485 communication). The AC motor drive will save the last frequency command into Pr.09-10 when abnormal turn-off or momentary power loss. After reboots the power, it will regards the frequency set in Pr.09-10 if no new frequency command is inputted.

Block Transfer 1

Block Transfer 2
Block Transfer 3
Block Transfer 4
Block Transfer 5
Block Transfer 6
Block Transfer 7
Block Transfer 8
Block Transfer 9
Block Transfer 10
Block Transfer 11
Block Transfer 12
Block Transfer 13
Block Transfer 14
Block Transfer 15
Block Transfer 16
Factory Setting: 0.00
Settings 0.00~655.35
[1] There is a group of block transfer parameter available in the AC motor drive (Pr.09-11 to Pr.09-20). User can use them (Pr.09-11 to Pr.09-20) to save those parameters that you want to read.

Reserved
69-29

79-39 Communication Decoding Method
Factory Setting: 0
Settings 0: Decoding Method 1
1: Decoding Method 2

		Decoding Method 1	Decoding Method 2
Source of	Digital Keypd	Digital keypad controls the drive action regardless decoding method 1 or 2.	
Operation	External Terminal	External terminal controls the drive action regardless decoding method 1 or 2.	
Control	RS-485	Refer to address: 2000h~20FFh	Refer to address: 6000h ~ 60FFh
	CANopen	Refer to index: 2020-01h~2020-FFh	Refer to index:2060-01h ~ 2060-FFh
	Communication Card	Refer to address: 2000h ~ 20FFh	Refer to address: 6000h ~ 60FFh

PLC PLC commands the drive action regardless decoding method 1 or 2.

Internal Communication Protocol
Factory Setting: 0
Settings 0: Modbus 485

[88-3E
 \sim
 Reserved

19-35 PLC Address

Factory Setting: 2
Settings 1~254

19-36 CANopen Slave Address
Factory Setting: 0
Settings 0: Disable
1~127

79-37 CANopen Speed

Factory Setting: 0
Settings 0:1M
1: 500k
2: 250k
3: 125k
4: 100k (Delta only)
5: 50k

79-38

CANopen Frequency Gain
Factory Setting: 1.00
Settings $0.00 \sim 2.00$

Settings bit 0: CANopen Guarding Time out
bit 1: CANopen Heartbeat Time out
bit 2: CANopen SYNC Time out
bit 3: CANopen SDO Time out
bit 4: CANopen SDO buffer overflow
bit 5: Can Bus Off
bit 6: Error protocol of CANOPEN

CANopen Decoding Method
Factory Setting: 1
Settings 0: Delta defined decoding method
1: CANopen Standard DS402 protocol

199-4: CANopen Status

Factory Setting: 0
Settings 0: Node Reset State
1: Com Reset State
2: Boot up State
3: Pre Operation State
4: Operation State
5: Stop State

75-42 CANopen Control Status		
		Factory Setting: Read Only
Settings	0 : Not ready for use state	
	1: Inhibit start state	
	2: Ready to switch on state	
	3: Switched on state	
	4: Enable operation state	
	7: Quick stop active state	
	13: Err reaction activation state	
	14: Error state	

Settings: bit0: reset address 20XX to 0 .
bit1: reset address 264X to 0
bit2: reset address 26AX to 0
bit3: reset address 60XX to 0

10 PID Control

This parameter can be set during operation.

In this parameter group, ASR is the abbreviation for Adjust Speed Regulator and PG is the abbreviation for Pulse Generator.

if - 7in Reserved

10-8 ; Encoder Pulse

Factory Setting: 600
Settings 1~20000
@ A Pulse Generator (PG) or encoder is used as a sensor that provides a feedback signal of the motor speed. This parameter defines the number of pulses for each cycle of the PG control, i.e. the number of pulses for a cycle of A phase/B phase.
凹】 This setting is also the encoder resolution. With the higher resolution, the speed control will be more accurate.
[id An errotic input to Pr.10-00 may result drive over current, motor stall, PM motor magnetic pole origin detection error. If Pr.10-00 setting has changed, please trace the magnetic pole again, set Pr.05-00=4 (static test for PM motor magnetic pole and PG origin again).

19-3 Encoder Input Type Setting MI7=A; MI8=B
Factory Setting: 0
Settings 0: Disable
1: Phase A leads in a forward run command and phase B leads in a reverse run command

2: Phase B leads in a forward run command and phase A leads in a reverse run command

3: Phase A is a pulse input and phase B is a direction input. (L =reverse direction, $\mathrm{H}=$ forward direction)

4: Phase A is a pulse input and phase B is a direction input. ($L=$ forward direction, $\mathrm{H}=$ reverse direction)

A

5: Single-phase input
A

19-93 Reserved

Electrical Gear at Load Side A1
Electrical Gear at Motor Side B1
Electrical Gear at Load Side A2
Electrical Gear at Motor Side B2
Factory Setting: 100
Settings 1~65535
[10] Parameters 10-04 to 10-07 can be used with the multi-function input terminal (set to 48) to switch to Pr.10-04~10-05 or Pr. 10-06~10-07 as shown as follows

18-88

Treatment for Encoder Feedback Fault
Factory Setting: 2
Settings 0: Warn and keep operating
1: Warn and RAMP to stop
2: Warn and COAST to stop

17-89

Detection Time of Encoder Feedback Fault
Factory Setting: 1.0
Settings $0.0 \sim 10.0 \mathrm{sec}$
0 : No function
[1] When encoder loss, encoder signal error, pulse signal setting error or signal error, if time exceeds the detection time for encoder feedback fault (Pr. 10-09), the encoder signal error will occur. Refer to the Pr.10-08 for encoder feedback fault treatment.
$18-18$
Encoder Stall Level
Factory Setting: 115
Settings 0~120\%
0 : No function
[10] This parameter determines the maximum encoder feedback signal allowed before a fault occurs.
(Max. output frequency Pr.01-00 =100\%)

in - : i Detection Time of Encoder Stall

Factory Setting: 0.1
Settings $0.0 \sim 2.0 \mathrm{sec}$

19 - 12 Treatment for Encoder Stall

Factory Setting: 2
Settings 0: Warn and keep operation
1: Warn and ramp to stop
2: Warn and coast to stop
[1] When the motor frequency exceeds Pr.10-10 setting and detection time exceeds Pr.10-11, it will operate as Pr.10-12 setting.

17-13 Encoder Slip Range

Factory Setting: 50
Settings 0~50\%
0: Disable
19-14 Detection Time of Encoder Slip
Factory Setting: 0.5
Settings $0.0 \sim 10.0 \mathrm{sec}$
19-15 Treatment for Encoder Stall and Slip Error
Factory Setting: 2
Settings 0: Warn and keep operation
1: Warn and ramp to stop
2: Warn and coast to stop
@】 When the value of (rotation speed - motor frequency) exceeds Pr.10-13 setting, detection time exceeds Pr.10-14; it will start to accumulate time. If detection time exceeds Pr.10-14, the encoder feedback signal error will occur. Refer to Pr.10-15 encoder stall and slip error treatment.

10-15

~ Reserved
是-23

19-24 FOC\&TQC Function Control

Factory Setting: 0
Settings 0~65535

Bit\#	Description
0	ASR control at sensorless torque $0:$ use PI as ASR; 1:use P as ASR
$1 \sim 10$	NA
11	Activate DC braking when executing zero torque command $0: O N, 1:$ OFF

12	FOC Sensorless mode, cross zero means speed goes from negative to positive or positive to negative (forward to reverse direction or reverse to forward direction). 0: determine by stator frequency, 1: determine by speed command
$13 \sim 14$	NA
15	Direction control at open loop status 0: Switch ON direction control $1:$ Switch OFF direction control

17-25 FOC Bandwidth of Speed Observer

Factory Setting:40.0
Settings $20.0 \sim 100.0 \mathrm{~Hz}$
[d] Setting speed observer to higher bandwidth could shorten the speed response time but will create greater noise interference during the speed observation.

19-26 FOC Minimum Stator Frequency

Factory Setting:2.0
Settings $\quad 0.0 \sim 10.0 \% f N$
凹 This parameter is used to set the minimum level of stator frequency at operation status. This setting ensures the stability and accuracy of observer and avoid interferences from voltage, current and motor parameter.

19-27 FOC Low-pass Filter Time Constant

Factory Setting:50
Settings $0 \sim 1000 \mathrm{~ms}$
[1] This parameter sets the low-pass filter time constant of a flux observer at start up. If the motor can not be activated during the high-speed operation, please lower the setting in this parameter.

Factory Setting:100
Settings $\quad 0 \sim 100 \% \operatorname{Tr}$ (Tr: rotor time constant)
[1] This parameter sets the drive's excitation current rise time when activates at senslorless torque mode. When the drive's activation time is too long at torque mode, please adjust this parameter to a shorter time constant.

* 19-3 Top Limit of Frequency Deviation

Factory Setting: 20.00
Settings $0.00 \sim 100.00 \mathrm{~Hz}$
(1) Pr.10-29 is for setting the maximum of frequency deviation.

19-39 Reserved

Factory Setting: 600
Settings 0~65535

Factory Setting: 4.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$
1713 - 3 PM Sensorless Obeserver Bandwith for Low Speed Zone
Factory Setting: 0.50
Settings $0.00 \sim 600.00 \mathrm{~Hz}$

19-34 PM Sensorless Observer Low-pass Filter Gain
Factory Setting: 1.00
Settings $\quad 0.00 \sim 655.35 \mathrm{~Hz}$

19-35 Speed bandwidth switching
Factory Setting: 10.00
Settings $0.00 \sim 655.35 \mathrm{~Hz}$
19-36 High/Low speed OBS bandwidth
Factory Setting: 0.50
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
19-37 PM Sensorless Control Word
Factory Setting: 0000
Settings 0000~FFFFh
19-38 Required Time for PM Sensorless d-axis Current Command Return to 0
Factory Setting: 1.0
Settings $\quad 0.0 \sim 655.35 \mathrm{sec}$

19-39 Frequency Point when switch from I/F mode to PM Sensorless mode
Factory Setting: 20.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$

19-4 Frequency Point when switch from PM Sensorless Observation mde to I/F mode Factory Setting: 20.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$
in - 1 : I/F mode, low pass-filter time
Factory Setting: 0.2
Settings $0.0 \sim 6.0 \mathrm{sec}$
17, 42 Initial Angle Detection Time
Factory Setting: 0
Settings 0~10ms
[1] PM Sensorless Adjustment Procedure

1. When using high frequency standstill VFD parameter tuning, use VFD software v1.45 to monitor adjustment procedure. To download VFD Sotware v1.45. go to:
http://www.delta.com.tw/product/em/drive/ac motor/download/software/VFDSoft\%20v1.45.zip
2. Testing PM High Frequency Standstill VFD (calculation of Rs, Ld, Lg)

Procedures:
A. Set control mode as VF mode (Pr00-10=0, Pr00-11=0
B. Output Frequency of Motor 1 (Pr01-01)
C. Output Voltage of Motor 1 (Pr01-02)
D. Induction Motor and Permanent Magnet Motor Selection (Pr05-33=1)
E. Full-load current of Permanent Magnet Motor(Pr05-34
F. Set Moto Auto Tuning Pr 05-00 $=13$; High frequency and blocked rotor test for PM motor. Then run the drive.
3. Set control mode as PM sensorless Mode (Parameters 00-10=0, 00-11=6)
4. Set VFD Prameters

マ Pr05-35 Rated Power of Permanent Magnet Motor
च Pr05-36 Rated speed of Permanent Magnet Motor
च Pr05-37 Pole number of Permanent Magnet Motor
V Pr05-38 Inertia of Permanent Magnet Motor
5. Set ASR Parameters

『 Pr11-00 bit0=1: Auto tuning for ASR and APR
$\square \operatorname{Pr11-02}$: ASR1/ASR2 Switch Frequency, it is recommended to set Pr10-39 higher than 10 Hz .

V Pr11-03: ASR1 Low-speed Bandwidth and Pr11-03, ASR2 High-speed Bandwidth. Do not set Low-speed Bandwith too high to avoid dissipation of the estimator.
6. Set speed estimator and speed control's parameter.

च Pr10-39 Frequency when switch from I/F Mode to PM sensorless mode.
V Pr10-32 PM Sensorless Obeserver Bandwith for High Speed Zone
7. Zero-load test
\square Refer to switch point prodcedure of I/F and FOC as shown in the image below.

11 Advanced Parameters

\wedge This parameter can be set during operation.
In this parameter group, ASR is the abbreviation for Adjust Speed Regulator

: 1 - 9 System Control

Factory Setting: 0
Settings 0 : Auto tuning for ASR and APR
1: Inertia estimate (only in FOCPG mode)
2: Zero servo
3: Dead time compensation closed
7: Selection to save or not save the freqeuncy
[a] Bit 0=0: Pr.11-06 to 11-11 will be valid and Pr.11-03~11-05 are invalid.
Bit $0=1$: system will generate an ASR setting. At this moment, Pr. 11-06~11-11 will be invalid and Pr.11-03~11-05 are valid.
Bit 1=0: no function.
Bit 1=1: Inertia estimate function is enabled. (Bit 1 setting would not activate the estimation process, please set Pr.05-00=12 to begin FOC/TQC Sensorless inertia estimating) Bit 2=0: no function.
Bit 2=1: when frequency command is less than Fmin (Pr.01-07), it will use zero servo function.

[1] Bit 7=0: frequency is saved before power turns off. When power turns on again, the display frequency will be the memorized frequency.
Bit 7=1: frequency is not saved before power turns off. When power turns ON again, the display frequency will be 0.00 Hz .

: : - : Per Unit of System Inertia

Factory Setting: 400
Settings 1~65535 (256=1PU)
[1] To get the system inertia from Pr.11-01, user needs to set Pr.11-00 to bit1=1 and execute continuous forward/reverse running.
Unit of induction motor system inertia is $0.001 \mathrm{~kg}-\mathrm{m}^{\wedge} 2$:

Power	Setting
1 HP	2.3
2 HP	4.3
3 HP	8.3
5 HP	14.8
7.5 HP	26.0
10 HP	35.8

The base value for induction motor system inertia is set by Pr.05-38 and the unit is in $0.001 \mathrm{~kg}-\mathrm{m}^{\wedge} 2$.

: 1 - ASR1/ASR2 Switch Frequency

Factory Setting: 7.00
Settings $5.00 \sim 600.00 \mathrm{~Hz}$
0 : no function

: 1 - 3 ASR1 Low-speed Bandwidth

Factory Setting: 10
Settings 1~40Hz (IM)/ 1~100Hz (PM)
1:74
ASR2 High-speed Bandwidth
Factory Setting: 10
Settings $1 \sim 40 \mathrm{~Hz}$ (IM)/ 1~100Hz (PM)

Settings $1 \sim 40 \mathrm{~Hz}$ (IM)/ 1~100Hz (PM)
[10] After estimating inertia and set Pr.11-00 to bit 0=1 (auto tuning), user can adjust parameters Pr.11-03, 11-04 and 11-05 separately by speed response. The larger number you set, the faster response you will get. Pr.11-02 is the switch frequency for low-speed/high-speed bandwidth.

N : : - 5 EASR (Auto Speed Regulation) control (P) 1
Factory Setting: 10
Settings $\quad 0 \sim 40 \mathrm{~Hz}$ (IM)/ 1~100Hz (PM)
N $\mathbf{i}: \mathbf{1} \mathbf{7}$ ASR (Auto Speed Regulation) control (I) 1
Factory Setting: 0.100
Settings $0.000 \sim 10.000 \mathrm{sec}$
: - 98 ASR (Auto Speed Regulation) control (PI) 2
Factory Setting: 10
Settings $\quad 0 \sim 40 \mathrm{~Hz}$ (IM)/ 0~100Hz (PM)

ASR (Auto Speed Regulation) control (I) 2
Factory Setting: 0.100
Settings $0.000 \sim 10.000 \mathrm{sec}$
1: 1 17
ASR(Auto Speed Regulation) Control (P) of Zero Speed
Factory Setting: 10
Settings $\quad 0 \sim 40 \mathrm{~Hz}$ (IM)/ 0~100Hz (PM)
: : - : ASR(Auto Speed Regulation) Control (I) of Zero Speed
Factory Setting: 0.100
Settings $0.000 \sim 10.000 \mathrm{sec}$
N :i-12
Gain for ASR Speed Feed Forward
Factory Setting: 0
Settings 0~100\%
[1] This parameter is used to improve speed response.

Tq Bias

: : 13 PDFF Gain Value

Factory Setting: 30
Settings 0~200\%
[1] After finishing estimating and set Pr.11-00 to bit 0=1 (auto tuning), using Pr.11-13 to reduce
overshoot. Please adjust PDFF gain value by actual situation.
lad This parameter will be invalid when Pr.05-24 is set to 1 .

: : - : 4 Low-pass Filter Time of ASR Output
Factory Setting: 0.008
Settings $0.000 \sim 0.350 \mathrm{sec}$
[a] It is used to set the filter time of ASR command.
1:-15 Notch Filter Depth
Factory Setting: 0
Settings 0~20db
1:-16
Notch Filter Frequency
Factory Setting: 0.00
Settings $0.00 \sim 200.00 \mathrm{~Hz}$
凹. This parameter is used to set resonance frequency of mechanical system. It can be used to suppress the resonance of mechanical system.
[1] The larger number you set Pr.11-15, the better suppression resonance function you will get.
[1] The notch filter frequency is the resonance of mechanical frequency.
: : 17 Forward Motor Torque Limit

Factory Setting: 500
Settings 0~500\%
(1) The motor rated torque is 100%. The settings for Pr.11-17 to Pr.11-20 will compare with Pr.03-00=7, 8, 9, 10. The minimum of the comparison result will be torque limit.
[ad Calculation equation for motor rated torque:
Motor rated torque $=T(N . M)=\frac{P(\mathrm{~W})}{\omega(\mathrm{rad} / \mathrm{s})} ; \mathrm{P}(\mathrm{W})$ value $=$ Pr.05-02;
$\omega(\mathrm{rad} / \mathrm{s})$ value $=\operatorname{Pr} .05-03 \cdot \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}$

i : i i Gain Value of Flux Weakening Curve for Motor 1

Factory Setting: 90
Settings 0~200\%

: - $\mathbf{2}$ Gain Value of Flux Weakening Curve for Motor 2

Factory Setting: 90
Settings 0~200\%
Pr.11-21 and 11-22 are used to adjust the output voltage of flux weakening curve.
[a] For the spindle application, the adjustment method is

1. It is used to adjust the output voltage when exceeding rated frequency.
2. Monitor the output voltage
3. Adjust Pr.11-21 (motor 1) or Pr.11-22 (motor 2) setting to make the output voltage reach motor rated voltage.
4. The larger number it is set, the larger output voltage you will get.

: $\mathfrak{1}$ 3 Speed Response of Flux Weakening Area

Factory Setting: 65
Settings 0: Disable

$$
0 ~ 150 \%
$$

[al It is used to control the speed in the flux weakening area. The larger value is set in Pr.11-23, the faster acceleration/deceleration will generate. In general, it is not necessary to adjust this parameter.

1:-2 $\mathbf{1}$ Max. Torque Command
Factory Setting: 100
Settings 0~500\%
[1] The upper limit of torque command is 100%.
[1] Calculation equation for motor rated torque:

$$
\begin{aligned}
& \text { motor rated torque: } T(N . M)=\frac{P(W)}{\omega(\mathrm{rad} / \mathrm{s})} ; \mathrm{P}(\mathrm{~W}) \text { value }=\operatorname{Pr} .05-02 \\
& \omega(\mathrm{rad} / \mathrm{s}) \text { value }=\operatorname{Pr} .05-03 \cdot \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}
\end{aligned}
$$

: : - B Source of Torque Offset

Factory Setting: 0
Settings 0: Disable
1: Analog input (Pr.03-00)
2: Torque offset setting (Pr.11-29)
3: Control by external terminal (by Pr.11-30 to Pr.11-32)
[1] This parameter is the source of torque offset.
[1] When it is set to 3 , source of torque offset would determine Pr.11-30 to Pr.11-32 by
When it is set to 3 , the source of torque offset will regard Pr.11-30~11-32 by the multi-function input terminals (MI) setting (31, 32 or 33).
N.O. switch status: $\mathrm{ON}=$ contact closed, OFF= contact open

Pr. 11-32	Pr. 11-31	Pr. 11-30	
MI=33(High)	MI=32(Mid)	MI=31(Low)	Torque Offset
OFF	OFF	OFF	None
OFF	OFF	ON	$11-30$
OFF	ON	OFF	$11-31$
OFF	ON	ON	$11-30+11-31$
ON	OFF	OFF	$11-32$
ON	OFF	ON	$11-30+11-32$
ON	ON	OFF	$11-31+11-32$
ON	ON	ON	$11-30+11-31+11-32$

: 1 - 9 Torque Offset Setting

Factory Setting: 0.0
Settings 0.0~100.0\%
[1] This parameter is torque offset. The motor rated torque is 100%.
[ad Calculation equation for motor rated torque:

$$
\begin{aligned}
& \text { motor rated torque: } T(N . M)=\frac{P(\mathrm{~W})}{\omega(\mathrm{rad} / \mathrm{s})} ; \mathrm{P}(\mathrm{~W}) \text { value= Pr.05-02; } \\
& \omega(\mathrm{rad} / \mathrm{s}) \text { value }=\operatorname{Pr} .05-03 \cdot \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}
\end{aligned}
$$

: : 37 High Torque Offset

Factory Setting: 30.0
Settings 0.0~100.0\%
: : 3 : Middle Torque Offset
Factory Setting: 20.0
Settings 0.0~100.0\%

: : $\mathbf{3}$?

Factory Setting: 10.0
Settings 0.0~100.0\%
\square When it is set to 3 , the source of torque offset will regard Pr.11-30, Pr.11-31 and Pr.11-32 by the multi-function input terminals setting (31, 32 or 33). The motor rated torque is 100%.
[a] Calculation equation for motor rated torque:
motor rated torque: $T(N . M)=\frac{P(W)}{\omega(r a d / s)} ; \mathrm{P}(\mathrm{W})$ value $=\mathrm{Pr} .05-02$;
$\omega(\mathrm{rad} / \mathrm{s})$ value $=\operatorname{Pr} .05-03 \cdot \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}$
: : 33 Source of Torque Command
Factory Setting: 0
Settings 0: Digital Keypad (Pr.11-34)
1: RS485 serial communication
2: Analog signal (Pr.03-00)

3: CANopen

[1] When Pr.11-33 is set to 0, torque command can be set in Pr.11-34.
[10] When Pr.11-33 is set to 1 or 2, Pr.11-34 would only display the torque command

: : 34 Torque Command

Factory Setting: 0.0
Settings -100.0~100.0\%(Pr.11-27=100\%)
[1] This parameter is for the torque command. When Pr.11-27 is set to 250% and Pr.11-34 is set to 100%, actual torque command=250X100\%=250\% motor rated torque.
[0] The drive will save the setting to the record before power turns off.

i: 35 Low-pass Filter Time of Torque Command

Factory Setting: 0.000
Settings $0.000 \sim 1.000 \mathrm{sec}$
11 When the setting is too long, the control will be stable but the control response will be delay. When the setting is too short, the response will be quickly but the control maybe unstable. User can adjust the setting by the control and response situation.

: :-35 Speed Limit Selection

Factory Setting: 0
Settings 0: Set by Pr.11-37 (Forward speed limit) and Pr.11-38 (Reverse speed limit)
1: Set by Pr.11-37,11-38 and Pr.00-20 (Source of Master Frequency Command)
2: Set by Pr.00-20 (Source of Master Frequency Command).
[1] Speed limit function: in TQCPG, when the motor speed is accelerated to speed limit value (Pr. 11-36, 11-37 and 11-38), it will switch to speed control mode to stop acceleration.
[1] When the torque is positive direction, speed limit is positive direction. When the torque is negative direction, speed limit is negative direction.

Settings 0~120\%

Settings 0~120\%

[a] These parameters are used in the torque mode to limit the running direction and opposite direction. (Pr.01-00 max. output frequency=100\%)

: : 39 Zero Torque Command Mode

Factory Setting: 0
Settings 0: Torque mode
1: Speed mode
[a] This parameter defines the torque command mode at 0\% of torque output. When Pr.11-39 is set as 0 (the torque mode), if torque command is 0%, the motor will produce excitation current but no torque current. When Pr.11-39 is set as 1 (the speed mode), if torque command is 0%, the AC motor drive can still produce torque current through speed controller to prevent motor race and the drive will also atomatically adjust the speed to 0 when the speed command is not equal to 0 .

Chapter 12 Warning Codes

(1) Display errorsignal
(2) Abbreviate error code.

The code is displayed as shown on KPC-CE01

Display on	Display on
KPE-LE02	KPC-CC01

| EE: Warning |
| :---: | :---: |
| SE1 |
| Save Error 1 |

Keypad COPY error 1
Save Error 1

Keypad COPY error 2

EE	Warning SE3 Copy Model Err 3	Keypad COPY error 3
Fic	Warning PID PID FBK Error	PID feedback error
Fioi	Warning ANL Analog loss	ACI signal error When Pr03-19 is set to 1 and 2 .
415	Warning uC Under Current	Low current
	Warning PGFb PG FBK Warn	PG feedback error
910	Warning PGL PG Loss Warn	PG feedback loss
二6980	Warning oSPd Over Speed Warn	Over-speed warning

Display on KPE-LE02	Display on KPC-CC01	Descriptions
E9E5	Warning dAvE Deviation Warn	Over speed deviation warning
E 11	Warning tUn Auto tuning	Auto tuning processing
	Warning CGdn Guarding T-out	CAN guarding time-out 1
$\therefore \Leftrightarrow$	Warning CHbn Heartbeat T-out	CAN heartbeat time-out 2
$5 E 18$	Warning CSyn SYNC T-out	CAN synchrony time-out
BE	Warning CbFn Can Bus Off	CAN bus off
$5 E$	Warning CSdn SDO T-out	CAN SDO transmission time-out
E E	Warning CSbn Buf Overflow	CAN SDO received register overflow
$\begin{gathered} \varepsilon_{1} \\ 1 \end{gathered}$	Warning Cbtn Boot up fault	CAN boot up error
Bion	Warning CPtn Error Protocol	CAN format error
Bin	Warning CLdn CAN/S Idx exceed	CAN index error
	Warning CAdn CAN/S Addres set	CAN station address error

Display on KPE-LE02	Display on KPC-CC01	Descriptions
EFM	Warning CFrn CAN/S FRAM fail	CAN memory error
O!	Warning PLod Opposite Defect	PLC download error
F! ¢ -	Warning PLSv Save mem defec	Save error of PLC download
	Warning PLdA Data defect	Data error during PLC operation
F! \%	Warning \quad PLFn Function defect	Function code of PLC download error
O!	Warning PLor Buf overflow	PLC register overflow
FiEF	Warning PLFF Function defect	Function code of PLC operation error
F! EM	Warning PLSn Check sum error	PLC checksum error
O! Ei	Warning PLEd No end command	PLC end command is missing
O! \%	Warning PLCr PLC MCR error	PLC MCR command error
F!		PLC download fail
F!EF	Warning PLSF Scane time fail	PLC scan time exceed

Display on KPE-LE02	Display on KPC-CC01	Descriptions
Eicios	Warning PCGd CAN/M Guard err	CAN Master guarding error
Eic	Warning PCbF CAN/M bus off	CAN Master bus off
Fiomi	Warning PCnL CAN/M Node Lack	CAN Master node error
Eicic	Warning PCCt CAN/M Cycle Time	CAN/M cycle time-out
EEEE	Warning PCSF CAN/M SDO over	CAN/M SDOover
EIE	HAND Warning PCSd CAN/M Sdo Tout	CAN/M SDO time-out
	Warning PCAd CAN/M Addres set	CAN/M station address error
EEF		Over-current during acceleration (Output current exceeds triple rated current during acceleration.) Corrective Actions: 1. Short-circuit at motor output: Check for possible poor insulation at the output lines. 2. Acceleration Time too short: Increase the Acceleration Time. 3. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
E18		Over-current during deceleration (Output current exceeds triple rated current during deceleration.) Corrective Actions: 1. Short-circuit at motor output: Check for possible poor insulation at the output line. 2. Deceleration Time too short: Increase the Deceleration Time. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
EET	Fault ocn Oc at normal SPD	Over-current during steady state operation (Output current exceeds triple rated current during constant speed.) Corrective Actions: 1. Short-circuit at motor output: Check for possible poor insulation at the output line. 2. Sudden increase in motor loading: Check for possible motor stall. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.

Display on KPE-LE02	Display on KPC-CC01	Descriptions
EEE		Over-current at stop Corrective Actions: Return to the factory
EEE		Corrective Actions: When (one of) the output terminal(s) is grounded, short circuit current is more than 75% of AC motor drive rated current, the AC motor drive power module may be damaged. NOTE: The short circuit protection is provided for AC motor drive protection, not for protection of the user. 1. Check the wiring connections between the AC motor drive and motor for possible short circuits, also to ground. 2. Check whether the IGBT power module is damaged. 3. Check for possible poor insulation at the output line.
EEE	Fault \quad HAND occ Short Circuit	Short-circuit is detected between upper bridge and lower bridge of the IGBT module. Corrective Actions: Return to the factory
018	Fault ovA Ov at accel	DC BUS over-voltage during acceleration (230V: DC 450V; 460V: DC 900V) Corrective Actions: 1. Check if the input voltage falls within the rated $A C$ motor drive input voltage range. 2. Check for possible voltage transients. 3. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
E18		DC BUS over-voltage during deceleration (230V: DC 450V; 460V: DC 900V) Corrective Actions: 1. Check if the input voltage falls within the rated $A C$ motor drive input voltage range. 2. Check for possible voltage transients. 3. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
E18	Fault HAND Ovn Ovat normal SPD	DC BUS over-voltage during constant speed (230V: DC 450V; 460V: DC 900V) Corrective Actions: 1. Check if the input voltage falls within the rated $A C$ motor drive input voltage range. 2. Check for possible voltage transients. 3. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
815	FaultHaND ovS Ovat stop	DC BUS over-voltage at stop Corrective Actions: 1. Check if the input voltage falls within the rated $A C$ motor drive input voltage range. 2. Check for possible voltage transients.
1. 18	Fault ${ }^{\text {HAND }}$ LvA Lvat accel	DC BUS voltage is less than Pr.06-00 during acceleration. Corrective Actions: 1. Check if the input voltage is normal 2. Check for possible sudden load
1-10	Fault Lvd Lvand	DC BUS voltage is less than Pr.06-00 during deceleration. Corrective Actions: 1. Check if the input voltage is normal 2. Check for possible sudden load

Display on KPE-LE02	Display on KPC-CC01	Descript
180	Fault Lvn Lvand normal SPD	DC BUS voltage is less than Pr.06-00 during constant speed. Corrective Actions: 1. Check if the input voltage is normal 2. Check for possible sudden load
18	Fault LvS Lvand stop	Low voltage at stop Corrective Actions: 1. Check if the input voltage is normal 2. Check for possible sudden load
Erios	Fault orP Phase lacked	Phase Loss Corrective Actions: Check Power Source Input if all 3 input phases are connected without loose contacts.
E18i	Fault oH1 IGBT over heat	IGBT overheating IGBT temperature exceeds protection level 40 to100HP: $100^{\circ} \mathrm{C}$ Corrective Actions: 1. Ensure that the ambient temperature falls within the specified temperature range. 2. Make sure that the ventilation holes are not obstructed. 3. Remove any foreign objects from the heatsinks and check for possible dirty heat sink fins. 4. Check the fan and clean it. 5. Provide enough spacing for adequate ventilation.
E180	Fault $\mathrm{oH} 2$ CAP over heat	Heatsink overheating Capacitance temperature exceeds cause heatsink overheating. Corrective Actions: 1. Ensure that the ambient temperature falls within the specified temperature range. 2. Make sure heat sink is not obstructed. Check if the fan is operating 3. Check if there is enough ventilation clearance for AC motor drive.
E180	Fault HAND oH3 Motor over heat	Motor overheating The AC motor drive detecting internal temperature exceeds the setting of Pr.06-30 (PTC level) Corrective Actions: 1. Make sure that the motor is not obstructed. 2. Ensure that the ambient temperature falls within the specified temperature range. 3. Take the next higher power AC motor drive model.
EBin	Fault HAND tH1o Thermo 1 open	Motor 1 overload Corrective Actions: 1. Check whether the motor is overloaded. 2. Check whether the rated current of motor (Pr.05-01) is suitable 3. Take the next higher power AC motor drive model.
EMEO	Fault ${ }^{\text {HAND }}$ Thermo 2 open	Motor overheating The AC motor drive detects that the internal temperature exceeds Pr.06-30 (PTC level) Corrective Actions: 1. Make sure that the motor is not obstructed. 2. Ensure that the ambient temperature falls within the specified temperature range. 3. Take the next higher power AC motor drive model.

Display on KPE－LE02	Display on KPC－CC01	Descriptions
E12		Overload The AC motor drive detects excessive drive output current． NOTE：The AC motor drive can withstand up to 150% of the rated current for a maximum of 60 seconds． Corrective Actions： 1．Check whether the motor is overloaded． 2．Take the next higher power AC motor drive model．
E8i		Electronic Thermal Relay 1 Protection Corrective Actions： 1．Check whether the motor is overloaded． 2．Check whether motor rated current setting（Pr．05－01）is suitable 3．Check electronic thermal relay function 4．Take the next higher power AC motor drive model．
E日i	Fault EoL2 Thermal relay 2	Electronic Thermal Relay 2 Protection Corrective Actions： 1．Check whether the motor is overloaded． 2．Check whether motor rated current setting（Pr．05－01）is suitable 3．Check electronic thermal relay function 4．Take the next higher power AC motor drive model．
日i	\qquad	These two fault codes will be displayed when output current exceeds the over－torque detection level（Pr．06－07 or Pr．06－10）and exceeds over－torque detection（Pr．06－08 or Pr．06－11）and it is set to 2 or 4 in Pr．06－06 or Pr．06－09．
OE	Fault ot2 Over torque 2	Corrective Actions： 1．Check whether the motor is overloaded． 2．Check whether motor rated current setting（Pr．05－01）is suitable 3．Take the next higher power AC motor drive model．
	$\begin{aligned} & \text { Fault } \\ & \quad \text { CF1 } \\ & \text { EEPROM write err } \end{aligned}$	Internal EEPROM can not be programmed． Corrective Actions： 1．Press＂RESET＂key to the factory setting． 2．Return to the factory．
$E E$	Fault \quad cF2 EEPROM read err	Internal EEPROM can not be read． Corrective Actions： 1．Press＂RESET＂key to the factory setting． 2．Return to the factory．
Ei	Fault cd1 las sensor err	U－phase error Corrective Actions： Re－power on to try it．If fault code is still displayed on the keypad，please return to the factory．
ニニ\％	$\begin{aligned} & \text { Fault } \quad \\ & \quad \text { cd2 } 2 \\ & \text { Ibs sensor err } \end{aligned}$	V－phase error Corrective Actions： Re－power on to try it．If fault code is still displayed on the keypad，please return to the factory．
に－\％	Fault cd3 Ics sensor err	W－phase error Corrective Actions： Re－power on to try it．If fault code is still displayed on the keypad，please return to the factory．
M	$\begin{aligned} & \text { Fault } \\ & \text { HdO } \\ & \text { cc HW error } \end{aligned}$	CC（current clamp） Corrective Actions： Re－power on to try it．If fault code is still displayed on the keypad，please return to the factory．

Display on KPE-LE02	Display on KPC-CC01	Descriptions
Hini	Fault Hd1 Oc HW error	OC hardware error Corrective Actions: Re-power on to try it. If fault code is still displayed on the keypad, please return to the factory.
H180	Fault Hd2 Ov HW error	OV hardware error Corrective Actions: Re-power on to try it. If fault code is still displayed on the keypad, please return to the factory.
His	Fault Hd3 occ HW error	Occ hardware error Corrective Actions: Reboots the power. If fault code is still displayed on the keypad please return to the factory
F1\%	Fault \quad HAND AUE Auto tuning err	Auto tuning error Corrective Actions: 1. Check cabling between drive and motor 2. Check the motor capacity and parameters settings 3. Retry again
GEE	Fault AFE PID Fbk error	PID loss (ACI) Corrective Actions: 1. Check the wiring of the PID feedback 2. Check the PID parameters settings
EiE:	Fault PGF1 PG Fbk error	PG feedback error Corrective Actions: Check if Pr.10-01 is not set to 0 when it is PG feedback control
EiEE	Fault PGF2 PG Fbk loss	PG feedback loss Corrective Actions: Check the wiring of the PG feedback
E15	Fault PAND PG Fbk over SPD	PG feedback stall Corrective Actions: 1. Check the wiring of the PG feedback 2. Check if the setting of Pl gain and deceleration is suitable 3. Return to the factory
EEEM	Fault PGF4 PGFbk deviate	PG slip error Corrective Actions: 1. Check the wiring of the PG feedback 2. Check if the setting of PI gain and deceleration is suitable 3. Return to the factory
Ein i	Fault PGr1 PG Ref error	Pulse input error Corrective Actions: 1. Check the pulse wiring 2. Return to the factory
E10	Fault PGr2 PG Refloss	Pulse input loss Corrective Actions: 1. Check the pulse wiring 2. Return to the factory

Display on KPE-LE02	Display on KPC-CC01	Descriptions
GEE	Fault ACE AClloss	ACl loss Corrective Actions: 1. Check the ACl wiring Check if the ACl signal is less than 4 mA
E	Fault EF ExND External fault	External Fault Corrective Actions: 1. Input EF (N.O.) on external terminal is closed to GND. Output U, V, W will be turned off. 2. Give RESET command after fault has been cleared.
EEi	Fault HAND EF1 Emergency stop	Emergency stop Corrective Actions: 1. When the multi-function input terminals MI1 to MI8 are set to emergency stop and the AC motor drive stops output. 2. Press RESET after fault has been cleared.
8	Fault haND bb Base block	Base Block Corrective Actions: 1. When the multi-function input terminals MI1 to MI8 are set to base block and the AC motor drive stops output. 2. Press RESET after fault has been cleared.
EIEIE	FaultHaND Pcod Password error${ }^{2} 1$	Password is locked Corrective Actions: Keypad will be locked. Turn the power ON after power OFF to re-enter the correct password. See Pr.00-07 and 00-08.
Eini	Fault CE01 PC err command	Illegal function code Corrective Actions: Check if the function code is correct (function code must be $03,06,10,63$)
EEBE		Illegal data length Corrective Actions: Check if the communication data length is correct.
EEB	Fault CE03 PC err data	Illegal data value Corrective Actions: Check if the data value exceeds max./min. value.
EEi	Fault CE04 PC slave fault	illegal communication address Corrective Actions: Check if the communication address is correct.
EIEI	Fault CE10 PC time out	Communication time-out Corrective Actions: Check if the wiring for the communication is correct.
Ein	Fault CP10 PU time out	Keypad (KPVL-CC01) communication time-out Corrective Actions: 1. Check if the wiring for the communication is correct 2. Check if there is any wrong with the keypad

13.2 Wiring for CANopen

An external adapter card: EKCB-HUB01 is used for CANopen wiring; establish CANopen to VFD C 200 connection. The link is enabled by using RJ45 cable. The two farthest ends must be terminated with 120Ω terminating resistors.

13.3 How to Control by CANopen

13.3.1 CANopen Control Mode Selection

There are two control modes for CANopen; Pr.09-40 set to 1 is the factory setting mode DS402 standard and Pr. 09.40 set to 0 is Delta's standard setting mode.

13.3.2 DS402 Standard Control Mode

To control the AC motor drive by CANopen, please set the parameters by the following steps:

1. Wiring for hardware (refer to Chapter 2 Wiring for CANopen)
2. Operation source setting: set Pr.00.21 to 3 (CANopen communication. Keypad STOP/RESET disabled.)
3. Frequency source setting: set Pr. 02.00 to 6 for CANopen communication card control. For CANopen to do torque control, set Pr.11-33 to 3; to do position control, set Pr.11-40 to 3. Also set Pr.09-30 to 1 (decoding method 2), use new address 60XX to control torque and position. The old address 20XX does not support torque and position control.
4. Source of torque setting is set by Pr.11-33.
5. CANopen station setting: set Pr.09-36 (Range of setting is 1~127. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error occurred (CAdE or CANopen memory error) as station setting is completed, press Pr.00-02=7 for reset.)
6. CANopen baud rate setting: set Pr. 09.37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K(4) and50K(5))
7. Set multiple input functions to Quick Stop (it can also be enable or disable, default setting is disable). If it is necessary to enable the function, set MI terminal to 53 in one of the following parameter: Pr. 02.01 ~Pr. 02.08 or Pr. 02.26 ~ Pr. 02.31 . (Note: This function is available in DS402 only.)
8. Switch to C2000 operation mode via the NMT string; control word 0×6040 (bit 0 , bit 1, bit 2, bit 3 and bit 7) and status word 0×6041.

For example:

1. If the multi-function input terminal MI set Quick Stop to disable, enable the responsive terminal of such MI terminal.
2. Set index 6040 H to 7 EH .
3. Set index 6040 H to 7 FH , the drive is now in operation mode.
4. Set index 6042 H to 1500 (rpm), the default setting for pole is $4(50 \mathrm{~Hz})$. Set the pole in Pr. 05.04 (Motor1) and Pr. 05.16 (Motor 2).

Calculation for motor speed: $n=f \times \frac{120}{p}$
where $n=$ ramp per minute (rpm/min);

$$
\begin{aligned}
& \mathrm{P}=\text { poles } \\
& \mathrm{f}=\text { frequency }(\mathrm{Hz})
\end{aligned}
$$

Example 1: set motor running in forward direction, $f=30 \mathrm{~Hz}, \mathrm{P}=4$.
$(120 * 30) / 4=900 \mathrm{rpm}$
Example 2: set motor running in reverse direction, $\mathrm{f}=20 \mathrm{~Hz}, \mathrm{P}=6$.
$(120 * 15) / 6=300 \mathrm{rpm} ; 300 \mathrm{rpm}=0 \times 012 \mathrm{C}$
Also,

Bit15 defines the positive and negative sign．
i．e．Index $6042=-300=\left(300^{\prime}+1\right)=012 C H^{\prime}+1=$ FED3H $+1=$ FED4H

Switching mode：

＜Status Switching Graph＞
9．The operation of AC motor drive in DS402 standard is controlled by the Control Word 0×6040 （bit4～bit6），as shown in the following chart：

	Index 6040			END
	Bit 6	Bit 5	Bit 4	
	Other			1
	1	0	1	LOCK 在當前頻率
	1	1	運轉到目標頻率	
	Bit 6	Index 6040	END	
Torque （Index 6060＝4）	X	Bit 5	Bit 4	運轉到目標扭力

10．Follow the same steps，refer to status switching process for status word $0 x 6041$（bit 0 to bit 6 ），bit $7=$ warn，bit $9=1$（permanently），bit 10＝target frequency reached，bit 11＝output exceeds maximum frequency．

13.3.3 Delta Defined Control Mode

There are two control modes.

1. Wiring for hardware (refer to chapter 13-2 Wiring for CANopen)
2. Operation source setting: set Pr.00-21 to 3 for CANopen communication control.
3. Frequency source setting: set Pr. 00.20 to 6 (CANopen setting. If torque control or position control is required, set Pr. 0.02 to 2. Also set Pr. 09.30 to 1 (default setting) to allow new address 60XX to function, the old address 20XX can not support the control function for position and torque.
4. Source of torque setting is set by Pr.11-33.
5. CANopen station setting: set Pr.09-36 (Range of setting is 1~127. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error occurred (CAdE or CANopen memory error) as station setting is completed, press Pr.00-02=7 for reset.)
6. CANopen baud rate setting: set Pr.09.37 (CANopen Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K(4) and 50K(5))
7. CANopen decode method setting: set Pr. 09.40 to 0 (Delta decoding method). It provides two decoding method by using Pr.09-30 and the default setting of the drive is in decoding method 2 (Pr.09-30=1).
8. Decoding method 1. In index 2020.01 enter 0002 H for motor run; 0001 H for motor stop. In index 2020.02 enter 1000, frequency will be 10.00 Hz . Refer to Index 2020 and 2021 for more detail.
9. Decoding method 2. In index 2060.01 enter 0080 H for motor switch on; enter 0×81 for motor run to the target frequency. Various control mode options are available in Pr.00-40, select your control mode.

13.4 CANopen Supporting Index

Basic Index Support by C200:

Index	Sub	Definition	Factory Setting	R/W	Size	Note
1000H	0	Device type	00010192H	R	U32	
1001H	0	Error register	0	R	U8	
1005H	0	COB-ID SYNC message	80 H	R	U32	
1006H	0	Communication cycle period	0	RW	U32	Unit: us The setting value should be in a multiple of 500us (integer) within the range 500us to 16 ms
1008H	0	Manufacturer device name	0	R	U32	
1009H	0	Manufacturer hardware version	0	R	U32	
100AH	0	Manufacturer software version	0	R	U32	
100CH	0	Guarding time	0	RW	U16	Unit: ms
100DH	0	Guarding factor	0	RW	U8	
1010H	0	Store Parameter	2	R	U8	
	1	Save all parameters	0	RW	U32	
	2	Save communication parameter	1	RW	U32	
1011H	0	Restore Parameter	2	R	U8	
	1	Restore all parameters	0	RW	U32	
	2	Restore communication parameter	1	RW	U32	
1014H	0	COB-ID emergency	0000080H+Node-ID	R	U32	
1015H	0	Inhibit time EMCY	0	RW	U16	Unit:100us The setting value should be in a multiple of 10 (integer)
1016H	0	Consumer heartbeat time	1	R	U8	
	1	Consumer 1	0	RW	U32	Unit: 1 ms Disable Guarding time to function properly
1017H	0	Producer heartbeat time	0	RW	U16	Unit: 1ms Disable Guarding time to function properly
1018H	0	Number	0	R	U8	
	1	Vender ID	000001DDH	R	U32	
	2	Product code	2A00+machine code	R	U32	
	3	Revision	00010000H	R	U32	
1200H	0	Server SDO Parameter	2	R	U8	
	1	COB-ID Client -> Server	0000600H+Node-ID	R	U32	
	2	COB-ID Client <- Server	0000580H+Node-ID	R	U32	
1400H	0	Number	2	R	U8	
	1	COB-ID used by PDO	00000200H+Node-ID	RW	U32	
	2	Transmission Type	5	RW	U8	00:Acyclic\& Synchronous
						01~240:Cyclic \& Synchronous
						255:Asynchronous

Index	Sub	Definition	Factory Setting	R/W	Size	Note
1401H	0	Number	2	R	U8	
	1	COB-ID used by PDO	80000300H+Node-ID	RW	U32	
	2	Transmission Type	5	RW	U8	00: Acyclic \& Synchronous
						01~240:Cyclic \& Synchronous
						255:Asynchronous
1402H	0	Number	2	R	U8	
	1	COB-ID used by PDO	80000400H+Node-ID	RW	U32	
	2	Transmission Type	5	RW	U8	00: Acyclic \& Synchronous
						01~240:Cyclic \& Synchronous
						255:Asynchronous
1403H	0	Number	2	R	U8	
	1	COB-ID used by PDO	80000500H+Node-ID	RW	U32	
	2	Transmission Type	5 H	RW	U8	00: Acyclic \& Synchronous
						01~240:Cyclic \& Synchronous
						255:Asynchronous
1600H	0	Number	2	RW	U8	
	1	1.Mapped Object	60400010H	RW	U32	
	2	2.Mapped Object	60420010H	RW	U32	
	3	3.Mapped Object	0	RW	U32	
	4	4.Mapped Object	0	RW	U32	
1601H	0	Number	3	RW	U8	
	1	1.Mapped Object	20264110H	RW	U32	
	2	2.Mapped Object	2026A110H	RW	U32	
	3	3.Mapped Object	2026A210H	RW	U32	
	4	4.Mapped Object	0	RW	U32	
1602H	0	Number	3	RW	U8	
	1	1.Mapped Object	60400010H	RW	U32	
	2	2.Mapped Object	607A0020H	RW	U32	
	3	3.Mapped Object	60600008H	RW	U32	
	4	4.Mapped Object	0	RW	U32	
1603H	0	Number	3	RW	U8	
	1	1.Mapped Object	60400010H	RW	U32	
	2	2.Mapped Object	60710010H	RW	U32	
	3	3.Mapped Object	60600008H	RW	U32	
	4	4.Mapped Object	0	RW	U32	
1800H	0	Number	5	R	U8	
	1	COB-ID used by PDO	00000180H+Node-ID	RW	U32	
	2	Transmission Type	5	RW	U8	00: Acyclic \& Synchronous
						01~240:Cyclic \& Synchronous
						255:Asynchronous

Index	Sub	Definition	Factory Setting	R/W	Size	Note
	3	Inhibit time	0	RW	U16	Unit: 100us The setting value should be in a multiple of 10 (integer)
	4	CMS-Priority Group	3	RW	U8	
	5	Event timer	0	RW	U16	Unit: 1 ms
1801H	0	Number	5	R	U8	
	1	COB-ID used by PDO	80000280H+Node-ID	RW	U32	
	2	Transmission Type	5	RW	U8	00: Acyclic \& Synchronous
						01~240:Cyclic \& Synchronous
						255:Asynchronous
	3	Inhibit time	0	RW	U16	Unit: 100us The setting value should be in a multiple of 10 (integer)
	4	CMS-Priority Group	3	RW	U8	
	5	Event timer	0	RW	U16	Unit: 1ms
1802H	0	Number	5	R	U8	
	1	COB-ID used by PDO	80000380H+Node-ID	RW	U32	
	2	Transmission Type	5	RW	U8	00: Acyclic \& Synchronous
						01~240:Cyclic \& Synchronous
						255:Asynchronous
	3	Inhibit time	0	RW	U16	Unit: 100us The setting value should be in a multiple of 10 (integer)
	4	CMS-Priority Group	3	RW	U8	
	5	Event timer	0	RW	U16	Unit: 1ms
1803H	0	Number	5	R	U8	
	1	COB-ID used by PDO	80000480H+Node-ID	RW	U32	
	2	Transmission Type	5	RW	U8	00: Acyclic \& Synchronous
						01~240:Cyclic \& Synchronous
						255:Asynchronous
	3	Inhibit time	0	RW	U16	Unit: 100us The setting value should be in a multiple of 10 (integer)
	4	CMS-Priority Group	3	RW	U8	
	5	Event timer	0	RW	U16	Unit: 1ms
1A00H	0	Number	2	RW	U8	
	1	1.Mapped Object	60410010H	RW	U32	
	2	2.Mapped Object	60430010 H	RW	U32	
	3	3.Mapped Object	0	RW	U32	
	4	4.Mapped Object	0	RW	U32	
1401H	0	Number	4	RW	U8	
	1	1.Mapped Object	20260110H	RW	U32	
	2	2.Mapped Object	20266110H	RW	U32	
	3	3.Mapped Object	20266210H	RW	U32	

Index	Sub	Definition	Factory Setting	R/W	Size	Note
	4	4.Mapped Object	20266310H	RW	U32	
1A02H	0	Number	3	RW	U8	
	1	1.Mapped Object	60410010H	RW	U32	
	2	2.Mapped Object	60640020H	RW	U32	
	3	3.Mapped Object	60610008 H	RW	U32	
	4	4.Mapped Object	0	RW	U32	
1A03H	0	Number	3	RW	U8	
	1	1.Mapped Object	60410010H	RW	U32	
	2	2.Mapped Object	60770010H	RW	U32	
	3	3.Mapped Object	60610008 H	RW	U32	
	4	4.Mapped Object	0	RW	U32	

C200 Index:
Parameter index corresponds to each other as following:

Index

$2000 \mathrm{H}+$ Group
sub-Index
member+1

For example:
Pr. 10.15 (Encoder Slip Error Treatment)
Group
member

$$
10(0 \bar{A} \mathrm{H}) \quad-\quad 15(0 \mathrm{FH})
$$

$$
\text { Index }=2000 \mathrm{H}+0 \mathrm{AH}=200 \mathrm{~A}
$$

$$
\text { Sub Index }=0 \mathrm{FH}+1 \mathrm{H}=10 \mathrm{H}
$$

C200 Control Index:
Delta Standard Mode (Old definition)

Index	Sub	Definition	Factory Setting	R/W	Size		Note
2020H	0	Number	3	R	U8		
	1	Control word	0	RW	U16	Bit 0~1	00B:disable
							01B:stop
							10B:disable
							11B: JOG Enable
						Bit2~3	Reserved
						Bit4~5	00B:disable
							01B: Direction forward
							10B: Reverse
							11B: Switch Direction
						Bit6~7	00B: $1^{\text {st }}$ step acceleration/deceleration
							01B: $2^{\text {nd }}$ step acceleration/deceleration
						Bit8~15	Reserved
	2	vl target velocity (Hz)	0	RW	U16		
	3	Other trigger	0	RW	U16	Bit0	1: E.F. ON

Delta Standard Mode (Old definition)

Index	sub	R/W	bit	Factory Setting	bit	Priority	Speed Mode	Torque Mode
2060 h	OOh	R						
	01h	RW	0	0	CMD_ACT	4	frmd $=0$	Tcmd $=0$
				Pulse 0				
				1			fcmd $=$ Fset(Fpid)	Tcmd = Tset
				Pulse 1				
			1		Dir	4	Pulse 00 None	
			1				Pulse 01 FWD run command	
			2				Pulse 10 REV run command	
							Pulse $11 \begin{aligned} & \text { Switch current direction } \\ & \text { command }\end{aligned}$	
			3	0	HALT	3	Drive run till target speed is attained	Free(Keep running to reach targeting torque)
				1			Drive stop by declaration setting	Lock(Torque stops at current speed)
			4	0	LOCK	4	Drive run till target speed is attained	
				1			Frequency stop at current frequency	
			5	0	JOG	4	JOG OFF	JOG OFF
				1				
				Pulse 1			JOG RUN	JOG RUN
			6	0	QSTOP	2	None	None
				1			Quick Stop	Quick Stop
			7	0	SERVO_ON	1	Servo OFF	Servo OFF
				1			Servo ON	Servo ON
			11~8	0000	GEAR	4	Master Speed	Master Torque
				0001~1111			$1^{\text {st }} \sim 15^{\text {th }}$ speed switching frequency.	
			13~12	00	ACC/DEC	4	1st accel/decel.	
				01			2nd accel/decel	
				10			3rd accel/decel	
				11			4th accel/decel	
			14	0	EN_SW	4	Multi-command and Accel/Dece time switching NOT allowed Multi-command and Accel/Decel time switching ALLOWED	Multi-command and Accel/Decel time switching NOT allowed
				1				Multi-command and Accel/Decel time switching ALLOWED
			15	Pulse 1	RST	4	Clear fault codes	Clear fault codes
		RW						

Index	sub	R/W	bit	Factory Setting	bit	Priority	Speed Mode	Torque Mode
	03h	RW					Speed command (unsigned decimal)	
	04h	RW						-
	05h	RW						-
	06h	RW						$\begin{array}{l}\text { Torque command } \\ \text { (signed decimal) }\end{array}$
	07h	RW						Speed limit (unsigned decimal)
2061h	01h	R	0	0	ARRIVE		Frequency command not reached	Torque command not reached
				1			Frequency attained	Torque attained
			2~1	00	DIR		FWD	FWD
				01			REV run switches to FWD run	REV run switches to FWD run
				10			FWD run switches to REV run	FWD run switches to REV run
				11			REV	REV
			5	0	JOG		None	None
				1			On JOG	On JOG
			6	0	QSTOP		None	None
				1			On Quick Stop	On Quick Stop
			7	0	SERVO_ON		PWM OFF	PWM OFF
				1			PWM ON	PWM ON
			8	0	PRLOCK		Parameters NOT locked	Parameters NOT locked
				1			Parameter Lock	Parameter Lock
			9	0	WARN		NO warning	NO warning
				1			Warning	Warning
			10	0	ERROR		No error	No error
				1			Error detected	Error detected
			11	0	IGBT_OK		IGBT OFF	IGBT OFF
				1			IGBT ON	IGBT ON
			15~11	-	-		-	-
	02h	R			Velocity cmd		Actual output frequency	Actual output frequency
	03h	R			-			
	04h	R	-				-	-
	05h	R					Actual position (absolute)	
	06h	R			Torq Cmd			Actual position (absolute)
	07h	R					Actual torque	Actual torque

DS402 Standard

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	$\begin{aligned} & \text { PDO } \\ & \text { Map } \end{aligned}$	Mode	Note	
6007h	0	Abort connection option code	2	RW	S16	Yes			0 : No action	
								2: Disable Voltage,		
								3: quick stop		
603Fh	0	Error code	0	R0	U16		Yes			
6040h	0	Control word	0	RW	U16		Yes			
6041h	0	Status word	0	R0	U16		Yes			
6042h	0	vl target velocity	0	RW	S16	rpm	Yes	vl		
6043h	0	vl velocity demand	0	RO	S16	rpm	Yes	vl		
6044h	0	vl control effort	0	RO	S16	rpm	Yes	vl		
604Fh	0	vl ramp function time	10000	RW	U32	1 ms	Yes	vI	Unit must be: 100 ms , and	
6050h	0	v/ slow down time	10000	RW	U32	1 ms	Yes	vl	check if the setting is set to	
6051h	0	vl quick stop time	1000	RW	U32	1 ms	Yes	vl	0.	
605Ah	0	Quick stop option code	2	RW	S16	-	No		0 : disable drive function 1 :slow down on slow down	
									ramp	
									2: slow down on quick stop ramp	
									5 slow down on slow down ramp and stay in QUICK STOP	

| Index | Sub | Definition | Factory
 Setting | R/W | Size | UnitPDO
 Map | Mode | Note |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

13.5 CANopen Fault Code

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault ocA Oc at accel	0001H	Over-current during acceleration	2213 H	1
ocd Oc at decel	0002H	Over-current during deceleration	2213 H	1
Fault ocn Oc at normal SPD	0003H	Over-current during steady status operation	2214H	1
Fault GFF Ground fault	0004H	Ground fault. When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of AC motor drive rated current. NOTE: The short circuit protection is provided for AC motor drive Protection, not for protection of the user.	2240 H	1
Fault \quad HaND occ Short Circuit	0005H	Short-circuit is detected between upper bridge and lower bridge of the IGBT module.	2250H	1
	0006H	Over-current at stop. Hardware failure in current detection	2314H	1
	0007H	Over-current during acceleration. Hardware failure in current detection	3210 H	2
Fault \quad HaNo ovd Ovat decel	0008H	Over-current during deceleration. Hardware failure in current detection.	3210 H	2
Fault \quad HAND ovn Ovat normal SPD	0009H	Over-current during steady speed. Hardware failure in current detection. 230V: 450Vdc; 460V: 900Vdc	3210 H	2

Display	Fault code	Description	CANopen fault code	```CANopen fault register (bit 0~7)```
Fault ovS Ov at stop	000AH	Over-voltage at stop. Hardware failure in current detection	3210 H	2
	000BH	DC BUS voltage is less than Pr.06.00 during acceleration.	3220 H	2
Fault Lvd Lv at decel	000CH	DC BUS voltage is less than Pr.06.00 during deceleration.	3220 H	2
$\begin{aligned} & \text { Fault } \\ & \text { Lvn } \\ & \text { Lvand normal SPD } \end{aligned}$	000DH	DC BUS voltage is less than Pr. 06.00 in constant speed.	3220 H	2
Fault LvS Lv at stop	000EH	DC BUS voltage is less than Pr.06-00 at stop	3220 H	2
	000FH	Phase Loss Protection	3130 H	2
Fault oH1 IGBT over heat	0010H	IGBT overheat IGBT temperature exceeds protection level. $\begin{aligned} & 1 \sim 15 \mathrm{HP}: 90^{\circ} \mathrm{C} \\ & 20 \sim 100 \mathrm{HP}: 100^{\circ} \mathrm{C} \end{aligned}$	4310 H	3
Fault oH2 Hear Sink oH	0011H	Heatsink overheat Heat sink temperature exceeds 900 C	4310H	3
Fault $\mathrm{tH} 10$ Thermo 1 open	0012H	Temperature detection circuit error (IGBT) IGBT NTC	FFOOH	3
Fault hano tH20 Thermo 2 open	0013H	Temperature detection circuit error (capacity module) CAP NTC	FF01H	3
Fault PWR Power RST OFF	0014H	Power RST off	FF02H	2

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
	0015H	Overload. The AC motor drive detects excessive drive output current. NOTE: The AC motor drive can withstand up to 150% of the rated current for a maximum of 60 seconds.	2310 H	1
HAND Fault EoL1 Thermal relay 1	0016H	Electronics thermal relay 1 protection	2310H	1
HAND Fault EoL2 Thermal relay 2	0017H	Electronics thermal relay 2 protection	2310H	1
HAND Fault oH3 Motor over heat	0018H	Motor overheating The AC motor drive detects that the internal temperature exceeds Pr.06-30 (PTC level)	FF20H	1
HAND Fault ot 1 Over torque 1	001AH	These two fault codes will be displayed when output current exceeds the over-torque detection level (Pr.06.07	8311H	3
Fault ot2 Over torque 2	001BH	or Pr.06.10) and exceeds over-torque detection(Pr. 06.08 or Pr.06.11) and it is set 2 or 4 in Pr.06-06 or Pr.06-09.	8311H	3
HAND Fault uC Under torque 1	001 CH	Low current	8321H	1
HAND Fault cF1 EEPROM write Err	001EH	Internal EEPROM can not be programmed.	5530H	5
HAND Fault cF2 EEPROM read Err	001FH	Internal EEPROM can not be read.	5530H	5
Fault cd1 las sensor Err	0021H	U-phase error	FF04H	1

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault cd2 Ibs sensor Err	0022H	V-phase error	FF05H	1
Fault \quad haNo cd3 Ics sensor Err	0023H	W-phase error	FF06H	1
	0024H	cc (current clamp) hardware error	FF07H	5
Fault Hd1 oc HW Error	0025H	oc hardware error	FF08H	5
Fault HaND Hd2 ov HW Error	0026H	ov hardware error	FF09H	5
	0027H	GFF hardware error	FFOAH	5
	0028H	Auto tuning error	FF21H	1
Fault AFE PID Fbk Error	0029H	PID loss (ACI)	FF22H	7
FaultPaNo PGF1 PG Fbk Error	002AH	PG feedback error	7301H	7
	002BH	PG feedback loss	7301H	7
Fault PGF3 PG Fbk Over SPD	002CH	PG feedback stall	7301H	7

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault PGF4 PG Fbk deviate	002DH	PG slip error	7301H	7
Fault PGF5 PG HW error	0041H	PG hardware error	7301H	5
Fault \quad PGr1 PG ref Error	002EH	Pulse input error	7300H	7
Fault PGr2 PG refloss	002FH	Pulse input loss	7300H	7
HAND Fault ACE AClloss	0030H	ACl loss	FFOOH	1
Fault EF Exand External Fault	0031H	External Fault When input EF (N.O.) on external terminal is closed to GND, AC motor drive stops output U, V, and W .	9000 H	5
Fault EF1 Emergency stop	0032H	Emergency stop When the multi-function input terminals MI1 to MI6 are set to emergency stop, the AC motor drive stops output U, V, W and the motor coasts to stop	9000 H	5
Fault hand bb Base block	0033H	External Base Block When the external input terminals MI1 to MI16 are set as bb and active, the AC motor drive output will be turned off	9000 H	5
Fault \quad Pcod Password Error	0034H	Password will be locked if three fault passwords are entered	6320H	5
Fault ccod SW code Error	0035H	Software error	6320H	5

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault CE1 Modbus CMD err	0036H	Illegal function code	7500H	4
Fault cE2 Mand Modbus ADDR err	0037H	Illegal data address (00H to 254 H)	7500H	4
Fault \quad cE3 Modbus DATA err	0038H	Illegal data value	7500H	4
Fault cE4 Modbus slave FLT	0039H	Data is written to read-only address	7500H	4
Fault cE10 Modbus time out	003AH	Modbus transmission timeout.	7500H	4
Fault \quad haND cP10 Keypad time out	003BH	Keypad transmission timeout.	7500H	4
Fault \quad bF Braking fault	003CH	Brake resistor fault	7110H	4
	003DH	Motor Y- Δ switch error	3330 H	2
Fault \quad HAND Deb. Energy back	003EH	Energy regeneration when decelerating	3320 H	2
Fault oSL Over slip Error	003FH	Overslip error. Slip exceeds Pr.05.26 limit and slip duration exceeds Pr. 05.27 setting.	FFOOH	7
Fault ocU Unknow Over Apm	0042H	Over current caused by unknown reason	2310 H	1

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault ovU Unknow Over volt.	0043H	Over voltage caused by unknown reason	3210 H	2
Fault \quad S1 S1-Emergy stop	0049H	External emergency stop	9000 H	5
HAND Fault OPHL U phase lacked	0052H	U phase output phase loss	3131H	2
HAND Fault OPHL U phase lacked	0053H	V phase output phase loss	3132H	2
Fault OPHL U phase lacked	0054H	W phase output phase loss	3133H	2
Fault aocc A phase short	004FH	A-phase short	2240 H	1
HAND Fault bocc B phase short	0050H	B-phase short	2240 H	1
HAND Fault cocc C phase short	0051H	C-phase short	2240H	1
HAND Fault CGdE Guarding T-out	0065H	Guarding time-out 1	8130H	4
Fault CHbE Heartbeat T-out	0066H	Heartbeat time-out	8130H	4
HAND Fault CSyE SYNC T-out	0067H	CAN synchrony error	8700H	4

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault CbFE CAN/S bus off	0068H	CAN bus off	8140H	4
Fault ${ }^{\text {CIdE }}$ CAN/S Idx exceed	0069H	Can index exceed	8110H	4
	006AH	CAN address error	0x8100	4
Fault CFdE CAN/S FRAM fail	006BH	CAN frame fail	0x8100	4

13.6 CANopen LED Function

There are two CANopen flash signs: RUN and ERR.
RUN LED:

LED status	Condition	CANopen State
OFF		Initial
Blinking		Pre-Operation
Single flash		Stopped
ON		Operation

ERR LED:

LED status	Condition/ State
OFF	No Error
Single flash	One Message fail
Double flash	Guarding fail or heartbeat fail
Triple flash	SYNC fail
ON	Bus off

Chapter 14 PLC Function

14.1 PLC Overview
14.2 Precautions for Using PLC
14.3 Start-up
14.4 PLC Ladder Diagram
14.5 PLC Devices
14.6 Commands
14.7 Error Code and Troubleshoot

14.1 PLC Overview

14.1.1 Introduction

The built in PLC function in C2000 allows following commands: WPLSoft, basic commands and application commands; the operation methods are the same as Delta DVPPLC series. Other than that, CANopen master provides 8 stations for synchronous control and 126 asynchronous controls.
\#, Note
In C2000, CANopen master synchronous control complies with DS402 standard and supports homing mode, speed mode, torque mode and point to point control mode; CANopen slave supports two control modes, speed mode and torque mode.

14.1.2 Ladder Diagram Editor - WPLSoft

WPLSoft is a program editor of Delta DVP-PLC series and C200 series for WINDOWS. Besides general PLC program planning and general WINDOWS editing functions, such as cut, paste, copy, multi-windows, WPLSoft also provides various Chinese/English comment editing and other special functions (e.g. register editing, settings, the data readout, the file saving, and contacts monitor and set, etc.).
Following is the system requirement for WPLSoft:

Item	System Requirement
Operation System	Windows 95/98/2000/NT/ME/XP
CPU	Pentium 90 and above
Memory	16 MB and above (32MB and above is recommended)
Hard Disk	Capacity: 50 MB and above CD-ROM (for installing WPLSoft)
Monitor	Resolution: $640 \times 480,16$ colors and above, It is recommended to set display setting of Windows to 800 $\times 600$.
Mouse	General mouse or the device compatible with Windows
Printer	Printer with Windows driver
RS-232 port	At least one of COM1 to COM8 can be connected to PLC
Applicable Models	All Delta DVP-PLC series and C200 series

14．2 Precautions for Using PLC Functions

1．Default setting of PLC communication protocol is $8, \mathrm{~N}, 2,19200$ ，station number 2 ．
2．Host controller can read／write data from／to both the AC motor drive and the internal PLC program by setting the drive and internal PLC program to two different station numbers．For example，if user wants to set AC motor drive as station 1 and PLC as station 2，please write following setting to the host controller：
When setting 01 （Station）03（Read）0400（Address）0001（1 data），the host controller can read the Pr．04－00 from the AC motor drive．

When setting 02（Station）03（Read）0400（Address）0001（1 data），host controller will read X0 data from the internal PLC program．
3．The internal PLC program will stop operation when upload／download programs．
4．When using WPR command to write parameters，parameters can be changed for a maximum of 10^{9} times．It is crucial not to exceed this limit to prevent occurrence of serious error．
5．When Pr．00－04 is set to 28 ，D1043 value of PLC register will be displayed on the digital keypad：

0 ～ 999 display：

1000 ～ 9999 display：It will only display the first 3 digits．The LED at the bottom－right corner will light to indicate 10 times of the display value．For example，the actual value for the following figure is $100 \times 10=1000$ ．

10000～65535 display：It will only display the first 3 digits．The LED at the bottom－right corner and the single decimal point between the middle and the right－most numbers will light to indicate 100 times of the display value．For example，the actual value for the following figure is $100 \times 100=10000$ ．
6．When PLC Stop mode，通訊 RS－485 被 PLC 使用。
7．When PLC is in PLC Run or PLC Stop mode，Pr．00－02（settings 9 and 10）are disabled．
8．When Pr．00－02 is set to 6 ，PLC function settings will return to factory settings．
9．When the Input Terminal X of PLC is programmed，the corresponding MI will be disabled（no function）．
10．當 PLC 有寫到輸入接點 Y0，Y1，Y3，Y4 時，所對應的 RY1，RY2，DFM1，DFM2 功能會無作用。
11．當 PLC 有寫到類比輸出 D1040 ，D1045 時，所對應的 AFM1 ，AFM2 功能會無作用。
12．When PLC function is programmed with FREQ command，AC motor drive frequency is now under PLC function control．The setting of Pr．00－20 and Hand ON／OFF are disabled and has no control over AC motor drive frequency．
13. When PLC is programmed with TORQ command, AC motor drive torque is now under PLC function control. The setting of Pr.11-33 and Hand ON/OFF function are disabled and has no control over AC motor drive torque.

14.3 Start-up

14.3.1 The Steps for PLC Execution

Please operate PLC functions by following the steps indicate below:
When using KPC-CE01 series digital keypad, switch the mode to PLC2 for program download/upload:
A. Press MODE key and select 'PLC'.
B. Press 'UP' key and look for 'PLC2' then press 'ENTER'.
C. If succeed, display 'END' for one to two seconds and return to 'PLC2' page.

The PLC warning that is displayed before program downloaded to C2000 can be ignored, please continue the operation.
PG
Disable

Run PLC
PLED
PLC Stop

1. Connection: Connect RJ-45 of AC motor drive to the computer by using RS485.

2. Run the program.
```
PLC
* 1.Disable
    2.PLC Run
    3.PLC Stop
```

- PLC function, select function 2 (PLC Run).

1: Disable (PLCO)
2: PLC Run (PLC1)
3: PLC Stop (PLC2)
Optional accessories: Digital keypad KPC-CE01, display PLC function as shown in the ().
When external input terminals (MI1~MI8) are set to PLC Mode select bit0 (51) or PLC Mode select bit1 (52), it will force to switch to PLC mode regardless the terminal is ON or OFF. Meanwhile, switching via keypad is disabled. Please refer to the chart below:

PLC Mode	PLC Mode select bit1(52)	PLC Mode select bit0 (51)
Disable (PLC 0)	OFF	OFF
PLC Run (PLC 1)	OFF	ON
PLC Stop (PLC 2)	ON	OFF
Previous state	ON	ON

When KPE-LE02 execute PLC function:

1. When switching the page from PLC to PLC1, it will execute PLC. The motion of PLC
(Execute/Stop) is controlled by WPL editor.
2. When switching the page from PLC to PLC2, it will stop PLC. Again the motion of PLC (Execute/Stop) is controlled by WPL editor.
3. The control of external terminals follows the same method.

NOTE

When input/output terminals (FWD REV MI1~MI8 MI10~15, Relay1, Relay2 RY10~RY15, MO1~MO2 MO10~MO11,) are used in PLC program, they cannot be used in other places. Fro example, when PLC program (PLC1 or PLC2) is activated, such as when it controls Y0, the corresponding output terminals Relay (RA/RB/RC) will be used. At this moment, Pr.03.00 setting will be invalid since the terminal has been used by PLC. Refer to Pr.02-52, 02-53, 03-30 to check which DI DO AO are occupied by PLC.

14.3.2 I/O Device Reference Table

Input device:

Device	X0	X1	X2	X3	X4	X5	X6	X7	X10	X11	X12	X13	X14	X15	X16	X17
$\mathbf{1}$	FWD	REV	MI1	MI2	MI3	MI4	MI5	MI6	MI7	MI8						

1: I/O extension card

Output device:

Device	Y 0	Y 1	Y 2	Y 3	Y 4	Y 5	Y 6	Y 7	Y 10	Y 11	Y 12	Y 13	Y 14	Y 15	Y 16	Y 17
$\mathbf{1}$	RY 1	RY 2		MO 1	MO 2											

1: I/O extension card

14.3.3 WPLSoft Installation

Download PLC program toC200: Refer to D. 3 to D. 7 for program coding and download the editor (WPLSoft V2.09) at DELTA website http://www.delta.com.tw/industrialautomation/

14.3.4 Program Input

14.3.5 Program Download

Please download the program by following steps:

Step 1. Press 裙 button for compiler after inputting program in WPLSoft.

Step 2. After compiler is finished, choose the item "Write to PLC" in the communication items.

After finishing Step 2, the program will be downloaded from WPLSoft to the AC motor drive by the communication format.

14.3.6 Program Monitor

If you execute "start monitor" in the communication item during executing PLC, the ladder diagram will be shown as follows.

14.4 Ladder Diagram

14.4.1 Program Scan Chart of the PLC Ladder Diagram

Calculate the result by ladder diagram algorithm (it doesn't sent to the outer output point but the inner equipment will output immediately.)

Repeats the execution in cycle.

14.4.2 Ladder Diagram

Ladder diagram is a diagram language that applied on the automatic control and it is also a diagram that made up of the symbols of electric control circuit. PLC procedures are finished after ladder diagram editor edits the ladder diagram. It is easy to understand the control flow that indicated with diagram and also accept by technical staff of electric control circuit. Many basic symbols and motions of ladder diagram are the same as mechanical and electrical equipments of traditional automatic power panel, such as button, switch, relay, timer, counter and etc.

The kinds and amounts of PLC internal equipment will be different with brands. Although internal equipment has the name of traditional electric control circuit, such as relay, coil and contact. It doesn't have the real components in it. In PLC, it just has a basic unit of internal memory. If this bit is 1 , it means the coil is ON and if this bit is 0 , it means the coil is OFF. You should read the corresponding value of that bit when using contact (Normally Open, NO or contact a). Otherwise, you should read the opposite sate of corresponding value of that bit when using contact (Normally Closed, NC or contact b). Many relays will need many bits, such as 8 -bits makes up a byte. 2 bytes can make up a word. 2 words make up double word. When using many relays to do calculation, such as add/subtraction or shift, you could use byte, word
or double word. Furthermore, the two equipments, timer and counter, in PLC not only have coil but also value of counting time and times.

In conclusion, each internal storage unit occupies fixed storage unit. When using these equipments, the corresponding content will be read by bit, byte or word.

Brief introduction to the internal devices of PLC:

Internal Device	Function
Input Relay	Input relay is the basic storage unit of internal memory that corresponds to external input point (it is the terminal that used to connect to external input switch and receive external input signal). Input signal from external will decide it to display 0 or 1. You couldn't change the state of input relay by program design or forced ON/OFF via WPLSoft. The contacts (contact a, b) can be used unlimitedly. If there is no input signal, the corresponding input relay could be empty and can't be used with other functions. $\boxed{V} \quad$ Equipment indication method: X0, X1...X7, X10, X11... The symbol of equipment is X and numbering in octal.
Output Relay	Output relay is the basic storage unit of internal memory that corresponds to external output point (it is used to connect to external load). It can be driven by input relay contact, the contact of other internal equipment and itself contact. It uses a normally open contact to connect to external load and other contacts can be used unlimitedly as input contacts. It doesn't have the corresponding output relay, if need, it can be used as internal relay. \square Equipment indication: Y0, Y1...Y7, Y10, Y11... The symbol of equipment is
Y and numbering in octal.	

	numbering in decimal system. The different number range corresponds with the different timing period.
Data register	PLC needs to handle data and operation when controlling each order, timer value and counter value. The data register is used to store data or parameters. It stores 16 -bit binary number, i.e. a word, in each register. It uses two continuous number of data register to store double words.
	$\square \quad$ Equipment indication: D0, D1, ..,D399. The symbol of equipment is D and numbering in decimal system.

The structure of ladder diagram and information:

Ladder Diagram Structure	Explanation	Command	Device
$\longrightarrow \vdash$	Normally open, contact a	LD	X, Y, M, T, C
4	Normally closed, contact b	LDI	X, Y, M, T, C
$\longrightarrow \longmapsto \vdash \vdash$	Serial normally open	AND	X, Y, M, T, C
$\stackrel{\square}{\square}$	Parallel normally open	OR	X, Y, M, T, C
	Parallel normally closed	ORI	X, Y, M, T, C
	Rising-edge trigger switch	LDP	X, Y, M, T, C
$\|\downarrow\|+$	Falling-edge trigger switch	LDF	X, Y, M, T, C
$\dashv \vdash\|\uparrow\|$	Rising-edge trigger in serial	ANDP	X, Y, M, T, C
$\dashv \longmapsto \vdash \mid$	Falling-edge trigger in serial	ANDF	X, Y, M, T, C
	Rising-edge trigger in parallel	ORP	X, Y, M, T, C
	Falling-edge trigger in parallel	ORF	X, Y, M, T, C
$\stackrel{\square}{\square}$	Block in serial	ANB	none

	Block in parallel	ORB	none
	Multiple output	MRS MRS IP	none
	Output command of coil drive	OUT	Y, M
	Basic command, Application command	Basic command Application command	
	Inverse logic	INV	none

14.4.3 The Edition of PLC Ladder Diagram

The program edited method is from left power line to right power line. (The right power line will be omitted during the edited of WPLSoft.) After editing a row, go to editing the next row. The maximum contacts in a row are 11 contacts. If you need more than 11 contacts, you could have the new row and start with continuous line to continue more input devices. The continuous number will be produced automatically and the same input point can be used repeatedly. The drawing is shown as follows.

The operation of ladder diagram is to scan from left upper corner to right lower corner. The output handling, including the operation frame of coil and application command, at the most right side in ladder diagram.

Take the following diagram for example; we analyze the process step by step. The number at the right corner is the explanation order.

The explanation of command order:

1	LD	YO
2	OR	MO
3	AND	X1
4	LD	XU

AND M1
ORB
5
LD \quad Y1
AND X 4
The explanation of command order:
6 LD T0
AND M3
ORB
7 ANB
8 OUT Y1
TMR T0 K10
The detail explanation of basic structure of ladder diagram

1. LD (LDI) command: give the command LD or LDI in the start of a block.

AND Block

OR Block

The structures of command LDP and LDF are similar to the command LD. The difference is that command LDP and LDF will act in the rising-edge or falling-edge when contact is ON as shown in the following.

2. AND (ANI) command: single device connects to a device or a block in series.

The structures of ANDP and ANDF are the same but the action is in rising-edge or falling-edge.
3. OR (ORI) command: single device connects to a device or a block.

The structures of ORP and ORF are the same but the action is in rising-edge or falling-edge.
4. ANB command: a block connects to a device or a block in series.

5. ORB command: a block connects to a device or a block in parallel.

If there are several blocks when operate ANB or ORB, they should be combined to blocks or network from up to down or from left to right.
6. MPS, MRD, MPP commands: Divergent memory of multi-output. It can produce many various outputs.
7. The command MPS is the start of divergent point. The divergent point means the connection place between horizontal line and vertical line. We should determine to have contact memory command or not according to the contacts status in the same vertical line. Basically, each contact could have memory command but in some places of ladder diagram conversion will be omitted due to the PLC operation convenience and capacity limit. MPS command can be used for 8 continuous times and you can recognize this command by the symbol " \rceil ".
8. MRD command is used to read memory of divergent point. Because the logical status is the same in the same horizontal line, it needs to read the status of original contact to keep on analyzing other ladder diagram. You can recognize the command MRD by the symbol " F ".
9. MPP command is used to read the start status of the top level and pop it out from stack. Because it is the last item of the horizontal line, it means the status of this horizontal line is ending.

14.4.4 The Example for Designing Basic Program

Start, Stop and Latching

In the same occasions, it needs transient close button and transient open button to be start and stop switch. Therefore, if you want to keep the action, you should design latching circuit. There are several latching circuits in the following:

Example 1: the latching circuit for priority of stop

When start normally open contact $\mathrm{X} 1=\mathrm{On}$, stop normally contact $\mathrm{X} 2=\mathrm{Off}$, and $\mathrm{Y} 1=\mathrm{On}$ are set at the same time, if $X 2=O n$, the coil Y1 will stop acting. Therefore, it calls priority of stop.

Example 2: the latching circuit for priority of start

When start normally open contact $\mathrm{X} 1=\mathrm{On}$, stop normally contact $\mathrm{X} 2=$ Off and $\mathrm{Y} 1=\mathrm{On}$ (coil Y 1 will be active and latching) are valid at the same time, if $\mathrm{X} 2=O n$, coil Y 1 will be active due to latched contact. Therefore, it calls priority of start.

Example 3: the latching circuit of SET and RST commands

The figure at the right side is latching circuit that made up of RST and SET command. It is top priority of stop when RST command is set behind SET command. When executing PLC from up to down, The coil Y1 is ON and coil Y 1 will be OFF when X 1 and X2 act at the same time, therefore it calls priority of stop.
It is top priority of start when SET command is set after RST command. When X1 and X 2 act at the same time, Y 1 is ON so it calls top priority of start.

Top priority of stop

Top priority of start

The common control circuit

Example 4: condition control

X1 and X3 can start/stop Y1 separately, X2 and X4 can start/stop Y2 separately and they are all self latched circuit. Y 1 is an element for Y 2 to do AND function due to the normally open contact connects to Y 2 in series. Therefore, Y 1 is the input of Y 2 and Y 2 is also the input of Y 1 .

Example 5: Interlock control

The figure above is the circuit of interlock control. Y1 and Y2 will act according to the start contact X1 and X2. Y1 and Y2 will act not at the same time, once one of them acts and the other won't act. (This is called interlock.) Even if X 1 and X 2 are valid at the same time, Y 1 and Y 2 won't act at the same time due to up-to-down scan of ladder diagram. For this ladder diagram, Y 1 has higher priority than Y 2 .

If add normally close contact Y 2 into Y 1 circuit to be an input for Y1 to do AND function. (as shown in the left side) Y 1 is an input of Y 2 and Y 2 can stop Y1 after acting. In this way, Y1 and Y2 can execute in sequential.

Example 7: Oscillating Circuit

The period of oscillating circuit is $\Delta T+\Delta T$

The figure above is a very simple ladder step diagram. When starting to scan Y 1 normally close contact, Y1 normally close contact is close due to the coil Y1 is OFF. Then it will scan Y1 and the coil Y 1 will be ON and output 1 . In the next scan period to scan normally close contact Y 1 , Y1 normally close contact will be open due to Y 1 is ON. Finally, coil Y1 will be OFF. The result of repeated scan, coil Y will output the vibrating pulse with cycle time ΔT (On) $+\Delta T$ (Off).

The vibrating circuitry of cycle time $\Delta T(O n)+\Delta T$ (Off):

The figure above uses timer T0 to control coil Y 1 to be ON. After Y 1 is ON , timer T0 will be closed at the next scan period and output Y 1 . The oscillating circuit will be shown as above. (n is the setting of timer and it is decimal number. T is the base of timer. (clock period))

Example 8: Blinking Circuit

The figure above is common used oscillating circuit for indication light blinks or buzzer alarms. It uses two timers to control On/OFF time of Y1 coil. If figure, n 1 and n 2 are timer setting of T1 and T2. T is the base of timer (clock period)

Example 9: Triggered Circuit

In figure above, the rising-edge differential command of $X 0$ will make coil $M 0$ to have a single pulse of $\Delta \mathrm{T}$ (a scan time). Y1 will be ON during this scan time. In the next scan time, coil M0 will be OFF, normally close M0 and normally close Y1 are all closed. However, coil Y1 will keep on being ON and it will make coil Y1 to be OFF once a rising-edge comes after input X0 and coil MO is ON for a scan time. The timing chart is as shown above. This circuit usually executes alternate two actions with an input. From above timing: when input XO is a square wave of a period T , output coil Y 1 is square wave of a period 2 T .

Example 10: Delay Circuit

When input X 0 is ON , output coil Y 1 will be ON at the same time due to the corresponding normally close contact OFF makes timer T10 to be OFF. Output coil Y1 will be OFF after delaying 100 seconds (K1000*0.1 seconds $=100$ seconds) once input X0 is OFF and T10 is ON. Please refer to timing chart above.

Example 11: Output delay circuit, in the following example, the circuit is made up of two timers.

No matter input X0 is ON or OFF, output Y4 will be delay.

Example12: Extend Timer Circuit

In this circuit, the total delay time from input X 0 is close and output Y 1 is $\mathrm{ON}=(\mathrm{n} 1+\mathrm{n} 2)^{*} \mathrm{~T}$. where T is clock period. Timer: T11, T12; Timer cycle: T.

14.5 PLC Devices Function

Items	Specifications	Remarks
Control Method	Stored program, cyclic scan system	I/O refresh instruction is available
I/O Processing Method	Batch processing (when END instruction is executed)	Application commands (1 ~ dozens us)
Execution Speed	Basic commands (minimum 0.24 us)	Instruction, Ladder Logic, SFC

	Device	Item		Range		Function
$\begin{array}{\|l\|} \hline \frac{0}{0} \\ \frac{0}{0} \\ \frac{1}{a} \\ \hline \frac{\pi}{\square} \\ \frac{\pi}{0} \\ \hline \end{array}$	X	External Input Relay		X0~X17, 16 points, octal number system	Total is 32 points	Correspond to external input point
	Y	External Output Relay		Y0~Y17, 16 points, octal number system		Correspond to external output point
	M	Auxiliary	For general	M0~M799, 800 points	Total is 192 points	Contacts can switch to On/Off in program
			For special	$\begin{aligned} & \text { M1000~M1079, } 80 \\ & \text { points } \end{aligned}$		
	T	Timer	100ms timer	T0~T159, 160 points	Total is 16 points	When the timer indicated by TMR command attains the setting, the T contact with the same number will be On.
	C	Counter	16-bit count up for general	C0~C79, 80 points	Total is 80 points	When the counter indicated by CNT command attains the setting, the C contact with the same number will be On.
	T	Present value of timer		T0~T15, 160 points		When timer attains, the contact of timer will be On.
	C	Present value of counter		C0~C79, 16-bit counter, 80 points		When timer attains, the contact of timer will be On.
	D	Data register	For latched	D0~D399, 400 points	Total is 1300 points	It can be memory area for storing data.
			For general	$\begin{aligned} & \text { D1000~D1099, } 100 \\ & \text { points } \end{aligned}$		
			For special	$\begin{aligned} & \text { D2000~D2799, } 800 \\ & \text { points } \end{aligned}$		
$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{0}} \\ & \stackrel{1}{\omega} \\ & \overline{0} \\ & \hline \end{aligned}$	K	Decimal		K-32,768 ~ K32,767 (16-bit operation)		
	H	Hexadecimal		H0000 ~ HFFFF (16-bit operation)		
Communication port (program read/write)				RS485 (slave)		
Analog input/output				Built-in 2 analog inputs and 1 analog output		
Function extension module (optional)				EMC-D42A; EMC-R6AA; EMCD611A		

14.5.1 Devices Functions

The Function of Input/output Contacts

The function of input contact X : input contact X reads input signal and enter PLC by connecting with input equipment. It is unlimited usage times for contact A or contact B of each input contact X in program. The On/Off of input contact X can be changed with the On/Off of input equipment but can't be changed by using peripheral equipment (WPLSoft).

The Function of Output Contact Y

The mission of output contact Y is to drive the load that connects to output contact Y by sending On/Off signal. There are two kinds of output contact: one is relay and the other is transistor. It is unlimited usage times for A or B contact of each output contact Y in program. But there is number for output coil Y and it is recommended to use one time in program. Otherwise, the output result will be decided by the circuit of last output Y with PLC program scan method.

The output of Y 0 will be decided by circuit 2, i.e. decided by On/Off of X10.

Value, Constant [K] / [H]

Constant	K	Decimal	K-32,768 ~ K32,767 (16-bit operation)
	H	Hexadecimal	H0000 \sim HFFFF (16-bit operation)

There are five value types for DVP-PLC to use by the different control destination. The following is the explanation of value types.
Binary Number (BIN)
It uses binary system for the PLC internal operation or storage. The relative information of binary system is in the following.

Bit	Bit is the basic unit of binary system, the status are 1 or 0.
Nibble	It is made up of continuous 4 bits, such as b3~b0. It can be used to represent number 0~9 of decimal or 0~F of hexadecimal.
Byte	It is made up of continuous 2 nibbles, i.e. 8 bits, b7~b0. It can used to represent 00~FF of hexadecimal system.
Word	It is made up of continuous 2 bytes, i.e. $16-$ bit, b15~b0. It can used to represent 0000~FFFF of hexadecimal system.
Double Word	It is made up of continuous 2 words, i.e. 32-bit, b31~b0. It can used to represent 00000000~FFFFFFFF of hexadecimal system.

The relations among bit, nibble, byte, word, and double word of binary number are shown as follows.

$>$ Octal Number (OCT)
The numbers of external input and output terminal of DVP-PLC use octal number.
Example:
External input: X0~X7, X10~X17... (device number)
External output: Y0~Y7, Y10~Y17... (device number)
> Decimal Number, DEC
The suitable time for decimal number to be used in DVP-PLC system.
$\nabla \quad$ To be the setting value of timer T or counter C, such as TMR C0 K50. (K constant)
\square To be the device number of M, T, C and D. For example: M10, T30. (device number)
\quad To be operand in application command, such as MOV K123 D0. (K constant)
> Binary Code Decimal (BCD)
It shows a decimal number by a unit number or four bits so continuous 16-bit can use to represent the four numbers of decimal number. BCD code is usually used to read the input value of DIP switch or output value to 7 -segment display to be display.
> Hexadecimal Number (HEX)
The suitable time for hexadecimal number to be used in DVP-PLC system.
\square To be operand in application command. For example: MOV H1A2B DO. (constant H)
> Constant K :
In PLC, it is usually have K before constant to mean decimal number. For example, K100 means 100 in decimal number.
Exception: The value that is made up of K and bit equipment $\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{S}$ will be bit, byte, word or double word. For example, K2Y10, K4M100. K1 means a 4-bit data and K2~K4 can be 8, 12 and 16-bit data separately.
> Constant H :
In PLC, it is usually have H before constant to mean hexadecimal number. For example, H100 means 100 in hexadecimal number.

The Function of Auxiliary Relay

There are output coil and A, B contacts in auxiliary relay M and output relay Y . It is unlimited usage times in program. User can control loop by using auxiliary relay, but can't drive external load directly. There are two types divided by its characteristics.
1.Auxiliary relay for general
2.Auxiliary relay for special
: It will reset to Off when power loss during running. Its state will be Off when power on after power loss.
: Each special auxiliary relay has its special function. Please don't use undefined auxiliary relay.

The Function of Timer

The unit of timer is $1 \mathrm{~ms}, 10 \mathrm{~ms}$ and 100 ms . The count method is count up. The output coil will be On when the present value of timer equals to the settings. The setting is K in decimal number. Data register D can be also used as settings.

- The real setting time of timer = unit of timer * settings

The Features and Functions of Counter

Item	16-bit counters	32-bit counters
Type	General	General High speed
Count direction	Count up	Count up/down
Settings	0~32,767	-2,147,483,648~+2,147,483,647
Designate for constant	Constant K or data register D	Constant K or data register D (2 for designated)
Present value change	Counter will stop when attaining settings	Counter will keep on counting when attaining settings
Output contact	When count attains the settings value, contact will be On and latched.	When count up attains settings, contact will be On and latched. When count down attains settings, contact will reset to Off.
Reset action	The present value will reset to 0 when RST command is executed and contact will reset to Off.	
Present register	16-bit	32-bit
Contact action	After scanning, act together.	After scanning, act together. Act immediately when count attains. It has no relation with scan period.

Functions:

When pulse input signal of counter is from Off to On, the present value of counter equals to settings and output coil is On. Settings are decimal system and data register D can also be used as settings. 16-bit counters C0~C79:
$\boxtimes \quad$ Setting range of 16 -bit counter is $\mathrm{K} 0 \sim \mathrm{~K} 32$, 767. (K0 is the same as K 1 . output contact will be On immediately at the first count.
■ General counter will be clear when PLC is power loss. If counter is latched, it will remember the value before power loss and keep on counting when power on after power loss.
\square If using MOV command, WPLSoft to send a value, which is large than setting to C0, register, at the next time that X 1 is from Off to $\mathrm{On}, \mathrm{C} 0$ counter contact will be On and present value will be set to the same as settings.
$\square \quad$ The setting of counter can use constant K or register D (not includes special data register D1000~D1044) to be indirect setting.
\square If using constant K to be setting, it can only be positive number but if setting is data register D, it can be positive/negative number. The next number that counter counts up from 32,767 is -32,768.

Example:

LD RST	X0	$\left.\right\|^{\mathrm{XO}}$		
LD	X1	$\times 1$		
CNT	C0 K5	$1 \mid$	CNT C0	K5
LD	CO	co		
OUT	Y0			

1. When $\mathrm{XO}=\mathrm{On}, \mathrm{RST}$ command is executed, CO reset to 0 and output contact reset to Off.
2. When X 1 is from Off to On, counter will count up (add 1).
3. When counter CO attains settings K, CO contact is On and $\mathrm{CO}=$ setting $=\mathrm{K} 5 . \mathrm{CO}$ won't accept X1 trigger signal and C0

14.5.2 Special Auxiliary Relays

Special M	Function	Read(R)/ Write(W)
M1000	Normally open contact (a contact). This contact is On when running and it is On when the status is set to RUN.	Read only
M1001	Normally closed contact (b contact). This contact is Off when running and it is Off when the status is set to RUN.	Read only
M1002	On only for 1 scan after RUN. Initial pulse is contact a. It will get positive pulse in the RUN moment. Pulse width=scan period.	Read only
M1003	Off only for 1 scan after RUN. Initial pulse is contact a. It will get negative pulse in the RUN moment. Pulse width=scan period.	Read only
M1004	Reserved	-
M1005	Fault indication of the AC motor drives	Read only
M1006	Output frequency is $0, \mathrm{M} 1006$ On	Read only
M1007	Operation direction of AC motor drives (FWD: M1007 Off, REV: M1007On)	Read only
$\begin{aligned} & \text { M1008 } \\ & \underset{\sim}{\text { M1010 }} \end{aligned}$	Reserved	
M1011	$10 \mathrm{~ms} \mathrm{clock} \mathrm{pulse} ,5 \mathrm{~ms} \mathrm{On} / 5 \mathrm{~ms}$ Off	Read only
M1012	$100 \mathrm{~ms} \mathrm{clock} \mathrm{pulse}$,50 ms On / 50ms Off	Read only
M1013	1 s clock pulse, 0.5 s On $/ 0.5 \mathrm{~s}$ Off	Read only
M1014	1 min clock pulse, 30s On / 30s Off	Read only
M1015	Frequency attained, M1015=On	Read only
M1016	Parameter read/write error, M1016=On	Read only
M1017	Succeed to write parameter, M1017 =On	Read only
M1018	Reserved	
M1019	Reserved	
M1020	Zero flag	Read only
M1021	Borrow flag	Read only
M1022	Carry flag	Read only

Special M	Function	Read(R)/ Write(W)
M1023	Divisor is 0	Read only
M1024	Reserved	-
M1025	RUN(ON) / STOP(OFF) the AC motor drive	Read/Write
M1026	The operation direction of the AC motor drive (FWD: OFF, REV: ON)	Read/Write
M1027	AC motor drive reset	Read/Write
$\begin{aligned} & \text { M1028 } \\ & \text { M1039 } \end{aligned}$	Reserved	-
M1040	Power On	Read/Write
M1041	Reserved	-
M1042	Quick stop	Read/Write
M1043	Reserved	-
M1044	Halt	Read/Write
$\begin{aligned} & \text { M1045 } \\ & \tilde{\text { M1051 }} \end{aligned}$	Reserved	-
M1052	Freuqency Lock	Read/Write
$\begin{aligned} & \text { M1053 } \\ & \tilde{\text { M1055 }} \end{aligned}$	Reserved	-
M1056	Power on ready	Read only
M1057	Reserved	-
M1058	On quick stopping	Read only
$\begin{gathered} \text { M1059 } \\ \tilde{\text { M1062 }} \end{gathered}$	Reserved	-
M1063	Target torque attained	Read only
$\begin{gathered} \text { M1064 } \\ \tilde{\text { M1071 }} \end{gathered}$	Reserved	Read only
$\begin{gathered} \text { M1072 } \\ \tilde{\text { M1079 }} \end{gathered}$	Reserved	Read/Write
$\begin{gathered} \text { M1073 } \\ \tilde{\text { M1079 }} \end{gathered}$	Reserved	Read only

14.5.3 Special Registers

Special D	Function	Read(R)/ Write(W)
D1000	Reserved	-
D1001	PLC firmware version	Read only
D1002	Program capacity	Read only
D1003	Checksum	Read only
D1004 $\tilde{\sim}$ D1009	Reserved	-
D1010	Present scan time (Unit: 0.1 ms)	Read only

Special D	Function	Read(R)/ Write(W)
D1011	Minimum scan time (Unit: 0.1 ms)	Read only
D1012	Maximum scan time (Unit: 0.1 ms)	Read only
$\begin{gathered} \text { D1013 } \\ \text { D1019 } \end{gathered}$	Reserved	-
D1020	Output frequency (0.000~600.00Hz)	Read only
D1021	Output current (\#\#\#\#.\#A)	Read only
$\begin{gathered} \text { D1022 } \\ \text { D1026 } \end{gathered}$	Reserved	-
D1027	Frequency command of the PID control	Read only
D1028	The responsive value of AUI AVI (analog voltage input) (0.00~100.00\%)	Read only
D1029	The responsive value of AUI ACI (analog current input) (0.0~100.00\%)	Read only
D1030	The corresponding value for AUI (-100.0~100.00\%)	Read only
$\begin{gathered} \text { D1031 } \\ \underset{\sim}{\sim} 1035 \end{gathered}$	Reserved	-
D1036	AC motor drive error code	Read only
D1037	AC motor drive output frequency	Read only
D1038	DC Bus voltage	Read only
D1039	Output voltage	Read only
D1040	Analog output value AFM1 (-100.00~100.00\%)	Read/Write
$\begin{gathered} \text { D1041 } \\ \underset{\sim}{\text { D1042 }} \end{gathered}$	Reserved	-
D1043	User defined (When Pr. 00.04 is set to 28, the register data will be displayed as C xxx)	Read/Write
D1044	Reserved	-
D1045	Analog output value AFM2 (-100.00~100.00\%)	Read/Write
$\begin{gathered} \text { D1046 } \\ \text { D1049 } \end{gathered}$	Reserved	-
D1050	Actual mode 0 : Velocity mode 1: Position mode 2: Torque mode	Read only
$\begin{gathered} \text { +D1051 } \\ \tilde{\sim} \\ \text { D1052 } \end{gathered}$	Reserved	-
D1053	Actual torque	Read only
$\begin{gathered} \text { D1054 } \\ \underset{\sim}{\text { D1059 }} \end{gathered}$	Reserved	Read only
D1060	Mode setting 0: Speed Mode 2: Torque Mode	Read/Write
$\begin{gathered} \text { D1061 } \\ \text { D1069 } \end{gathered}$	Reserved	Read/Write

14.5.4 Communication Address for PLC Devices

Device	Range	Type	Address (Hex)
X	$00 \sim 17$ (Octal)	bit	$0400 \sim 040 \mathrm{~F}$
Y	$00 \sim 17$ (Octal)	bit	$0500 \sim 050 \mathrm{~F}$
T	$00 \sim 159$	bit/word	$0600 \sim 069 \mathrm{~F}$
M	$000 \sim 799$	bit	$0800 \sim 0 B 1 \mathrm{~F}$
M	$1000 \sim 1079$	bit	$0 B E 8 \sim 0 C 37$
C	$0 \sim 79$	bit/word	$0 E 00 \sim 0 E 47$
D	$00 \sim 399$	word	$1000 \sim 118 \mathrm{~F}$
D	$1000 \sim 1099$	word	$13 E 8 \sim 144 \mathrm{~B}$

Function Code

Function Code	Description	Supported Devices
01	Read coil status	Y, M, T, C
02	Read input status	X,Y,M,T,C
03	Read one data	T,C,D
05	Force changing one coil status	Y,M,T,C
06	Write in one data	T,C,D
$0 F$	Force changing multiple coil	
status	Y,M,T,C	
10	Write in multiple data	T,C,D

Only when PLC is at Stop status, PLC data can be read/write via communication device. When PLC is at Run status, the communication address should be the mapping address, e.g. for Pr.04-00 it maps to 0400 H .

NOTE

When PLC function is activated, C2000 can Read/Write the PLC and drive's parameter by different addresses (pre-defined station number for the AC motor drive is 1 , for PLC station number is 2)

14.6 Commands

14.6.1 Basic Commands

Commands

Commands	Function	Operands
LD	Load contact A	X, Y, M, T, C
LDI	Load contact B	X, Y, M, T, C
AND	Series connection with A contact	X, Y, M, T, C
ANI	Series connection with B contact	X, Y, M, T, C
OR	Parallel connection with A contact	X, Y, M, T, C
ORI	Parallel connection with B contact	X, Y, M, T, C
ANB	Series connects the circuit block	--
ORB	Parallel connects the circuit block	--
MPS	Save the operation result	--
MRD	Read the operation result (the pointer is	
not moving)	--	
MPP	Read the result	--

Output Command

Commands	Function	Operands
OUT	Drive coil	Y, M
SET	Action latched (ON)	Y, M
RST	Clear the contacts or the registers	Y, M, T, C, D

Timer and Counter

Commands	Function	Operands
TMR	16-bit timer	T-K or T-D
CNT	16-bit counter	C-K or C-D (16 bit)

Main Control Command

Commands	Function	Operands
MC	Connect the common series connection contacts	N0~N7
MCR	Disconnect the common series connection contacts	N0~N7

Rising-edge/falling-edge Detection Commands of Contact

Commands	Function	Operands
LDP	Rising-edge detection operation starts	X, Y, M, T, C
LDF	Falling-edge detection operation starts	X, Y, M, T, C
ANDP	Rising-edge detection series connection	X, Y, M, T, C
ANDF	Falling-edge detection series connection	X, Y, M, T, C
ORP	Rising-edge detection parallel connection	X, Y, M, T, C
ORF	Falling-edge detection parallel connection	X, Y, M, T, C

Rising-edge/falling-edge Output Commands

Commands	Function	Operands
PLS	Rising-edge output	Y, M
PLF	Falling-edge output	Y, M

End Command

Commands	Function	Operands
END	Program end	--

Other Command

Commands	Function	Operands
NOP	No function	--
INV	Inverse operation result	--
P	Indicator	P

14.6.2 Explanation for the Command

Mnemonic	Function					
LD	Load A contact					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

L The LD command is used on the A contact that has its start from the left BUS or the A contact that is the start of a contact circuit. Function of the command is to

Explanation

 save present contents, and at the same time, save the acquired contact status into the accumulative register.Example Ladder diagram \quad| Command code | Operation | |
| :--- | :--- | :--- |
| LD | X0 | Load contact A of $\mathrm{X0}$ |

Mnemonic	Function					
LDI	Load B contact					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The LDI command is used on the B contact that has its start from the left BUS or the B contact that is the start of a contact circuit. Function of the command is to

Explanation

save present contents, and at the same time, save the acquired contact status into the accumulative register.	Example	Ladder diagram:	Command code: Operation:	
LDI	X0	Load contact B of XO		

Mnemonic	Function					
AND	Series connection- A contact					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The AND command is used in the series connection of A contact. The function of the
 command is to readout the status of present specific series connection contacts first, and then to perform the "AND" calculation with the logic calculation result before the contacts, thereafter, saving the result into the accumulative register.

| Example | Ladder diagram: Command code: | Operation: | |
| :--- | :--- | :--- | :--- | :--- |
| | LDI | X1 | Load contact B of
 X1 |

Mnemonic	Function					
ANI	Series connection- B contact					
Operand	$\mathrm{X} 0 \sim \mathrm{X} 17$	$\mathrm{Y} 0 \sim \mathrm{Y} 17$	$\mathrm{M} 0 \sim \mathrm{M} 799$	$\mathrm{~T} 0 \sim 159$	$\mathrm{C} 0 \sim \mathrm{C} 79$	$\mathrm{D} 0 \sim \mathrm{D} 399$
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The ANI command is used in the series connection of B contact. The function of the

Explanation

 command is to readout the status of present specific series connection contacts first, and then to perform the "AND" calculation with the logic calculation result before the contacts, thereafter, saving the result into the accumulative register.Ladder diagram:

Example

Command code: Operation:

LD	X1	Load contact A of X1
ANI	X0	Connect to contact B of X0 in series
OUT	Y1	Drive Y1 coil

Mnemonic	Function					
OR	Parallel connection- A contact					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The OR command is used in the parallel connection of A contact. The function of the command is to readout the status of present specific series connection contacts, and then to perform the "OR" calculations with the logic calculation result before the contacts, thereafter, saving the result into the accumulative register.

Ladder diagram:

Command code: Operation:

LD	X0	Load contact A of X0
OR	X1	Connect to contact A of X1 in parallel
OUT	Y1	Drive Y 1 coil

Mnemonic	Function						
ORI	Parallel connection- B contact						
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399	
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	

The ORI command is used in the parallel connection of B contact. The function of the

Explanation command is to readout the status of present specific series connection contacts, and then to perform the "OR" calculations with the logic calculation result before the contacts, thereafter, saving the result into the accumulative register.

Command code: Operation:
LD X0 Load contact A of X0
ORI \quad X1 Connect to contact B of
X1 X1 in paralle
OUT Y1 Drive Y1 coil

Mnemonic	Function
ANB	Series connection (Multiple Circuits)
Operand	

Explanation
To perform the "ANB" calculation between the previous reserved logic results and contents of the accumulative register.

Example

Ladder diagram:

Command code: Operation:

LD	X0	Load contact A of $X 0$
ORI	X2	Connect to contact B of
X2 in parallel		
LDI	X1	Load contact B of X 1
OR	X3	Connect to contact A of X3 in parallel
ANB		Connect circuit block in series
OUT	Y1	Drive Y1 coil

Function

Parallel connection (Multiple circuits)
Operand
None

Explanation

ORB is to perform the "OR" calculation between the previous reserved logic results and contents of the accumulative register.

Command code: Operation:

LD	X0	Load contact A of X0
ANI	X1	Connect to contact B of
X1 in series		

Mnemonic	Function
MPS	Store the current result of the internal PLC operations
Operand	None
Explanation	To save contents of the accumulative register into the operation result. (the result operation pointer pluses 1)

Mnemonic	Function
MRD	Reads the current result of the internal PLC operations
Operand	None

Explanation

Reading content of the operation result to the accumulative register. (the pointer of operation result doesn't move)

Mnemonic	Function
MPP	Reads the current result of the internal PLC operations
Operand	None

Explanation

Reading content of the operation result to the accumulative register. (the stack pointer will decrease 1)

Command code: Operation:

LD	X0	Load contact A of X0
MPS		Save in stack

Mnemonic	Function					
OUT	Output coil					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	-	\checkmark	\checkmark	-	-	-
Explanation	Output the logic calculation result before the OUT command to specific device. Motion of coil contact:					
	Operation result	OUT command				
		Coil	Contact			
			A contact (normally open)		B contact (normally closed)	
	FALSE	Off	Non-continuity	Continuity		
	TRUE	On	Continuity	Non-continuity		
Example	Ladder diagram:			Command code: Operation:		
	x0		Y1	AND	$\begin{array}{ll} \text { X1 } & \text { Conn } \\ \mathrm{X} 1 \end{array}$	act B of X0 contact A of s
				OUT	Y1 Drive $Y 1$	
Mnemonic	Function					
SET	Latch (ON)					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	-	\checkmark	\checkmark	-	-	-

When the SET command is driven, its specific device is set to be "ON," which will

Explanation

 keep "ON" whether the SET command is still driven. You can use the RST command to set the device to "OFF".Ladder diagram:
Example

Command code: Operation:
LD X0 Load contact A of X0 Connect to contact B of Y0 in series

SET Y1 Y1 latch (ON)

Mnemonic	Function					
RST	Clear the contacts or the registers					
Operand	$\mathrm{X} 0 \sim$ X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

When the RST command is driven, motion of its specific device is as follows:

Device	Status
Y, M	Coil and contact will be set to "OFF".
T, C	Present values of the timer or counter will be set to 0 , and the coil and contact will be set to "OFF."
D	The content value will be set to 0.

When the RST command is not driven, motion of its specific device is unchanged.

Command code: Operation:
LD X0 Load contact A of X0

$\\|_{0}^{x 0}$	RST	Y5	RST	Y5	Clear contact Y5
Function					
16-bit timer					
T-K	T0~T159, K0~K32,767				
T-D	T0~T159, D0~D399				

Explanation

When TMR command is executed, the specific coil of timer is ON and timer will start to count. When the setting value of timer is attained (counting value >= setting value), the contact will be as following

NO(Normally Open)	contact	Open collector
NC(Normally Closed)	contact	Close collector

When the RST command is not driven, motion of its specific device remains unchanged.

Example Ladder Diagram:

Command code: Operation:

LD	X0	Load contact A of X0
TMR	T5	Setting of T5 counter
	K1000	is K1000.

Mnemonic	Function	
CNT	Clear contact or register	
Operand	$\mathrm{C}-\mathrm{K}$	$\mathrm{C} 0 \sim \mathrm{C} 79, \mathrm{~K} 0 \sim \mathrm{~K} 32,767$
	$\mathrm{C}-\mathrm{D}$	$\mathrm{C} 0 \sim \mathrm{C} 79$, D0~D399

Explanation
When the CNT command is executed from OFF \rightarrow ON, which means that the counter coil is driven, and 1 should thus be added to the counter's value; when the counter achieved specific set value (value of counter $=$ the setting value), motion of the contact is as follows:

NO(Normally Open) contact	Open collector
NC(Normally Close) contact	Close collector

If there is counting pulse input after counting is attained, the contacts and the counting values will be unchanged. To re-count or to conduct the CLEAR motion, please use the RST command.

Command code: Operation
LD X0 Load contact A of CNT C2 K100 $\begin{aligned} & \text { Setting of C2 counter is }\end{aligned}$

Explanation	Usage of the LDF command is the same as the LD command, but the motion is different. It is used to reserve present contents and at the same time, saving the detection status of the acquired contact falling-edge into the accumulative register.
	Ladder diagram: Command code: Operation:
Example	LDF Xo $\begin{aligned} & \text { Start X0 falling-edge } \\ & \text { detection }\end{aligned}$
	AND $\quad \mathrm{X} 1 \quad \begin{aligned} & \text { Series connection } \mathrm{A} \\ & \text { contact of } \mathrm{X} 1\end{aligned}$
	OUT Y1 Drive Y1 coil

Mnemonic	Function					
ANDP	Rising-edge series connection					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation ANDP command is used in the series connection of the contacts' rising-edge detection.

Ladder diagram: Command code:

Command code: Operation:
Load A contact of X0
X1 rising-edge
ANDP X1 detection in series connection Drive Y1 coil

Mnemonic	Function					
ANDF	Falling-edge series connection					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation ANDF command is used in the series connection of the contacts' falling-edge detection.

	Ladder diagram:	Command code:		Operation:
Example	X0	LD	X0	Load A contact of X0
		ANDF	X1	X1 falling-edge detection in series connection
		OUT	Y1	Drive Y1 coil

Mnemonic	Function					
ORP	Rising-edge parallel connection					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The ORP commands are used in the parallel connection of the contact's

Explanation

 rising-edge detection.

Command code: Operation:

LD	X0	Load A contact of X0
ORP	X1	X1 rising-edge detection in parallel connection
OUT	Y1	Drive Y1 coil

Mnemonic	Function					
ORF	Falling-edge parallel connection					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

The ORP commands are used in the parallel connection of the contact's falling-edge detection.

Command code: Operation:

| LD | X0 |
| :---: | :--- | | Load A contact of X0 |
| :--- |

Mnemonic	Function					
PLS	Rising-edge output					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	-	\checkmark	\checkmark	-	-	-

Mnemonic	Function					
PLF	Falling-edge output					
Operand	$\mathrm{X} 0 \sim \mathrm{X} 17$	$\mathrm{Y} 0 \sim \mathrm{Y} 17$	$\mathrm{M} 0 \sim \mathrm{M} 799$	T0~159	C0~C79	D0~D399
	-	\checkmark	\checkmark	-	-	-

[^3]When $\mathrm{XO}=\mathrm{ON} \rightarrow \mathrm{OFF}$ (falling-edge trigger), PLF command will be executed and M0 will send the pulse of one time which the length is the time for scan one time.

Ladder diagram:

Timing Diagram:

Command code: Operation:

LD	X0	Load contact A of X0
PLF	M0	M0 falling-edge output
LD	M0	Load contact A of MO
SET	Y0	Y0 latched (ON)

Mnemonic	Function	
END	Program End	
Operand		None

It needs to add the END command at the end of ladder diagram program or
Explanation command program. PLC will scan from address o to END command, after the execution it will return to address 0 and scan again.

Mnemonic	Function	
NOP	No action	
Operand	None	

Explanation
 command will remain the logic operation. Use NOP command if user wants to delete certain command without changing the length of the program.
Example Ladder diagram:

NOP command will be simplified and not
displayed when the ladder diagram is
displayed.

Command code: Operation:

LD	X0	Load contact B of X0
NOP		No function
OUT	Y1	Drive Y1 coil

Mnemonic	Function	
INV	Inverse operation result	
Operand		None

Explanation

The operation result (before executing INV command) will be saved inversely into cumulative register.

Command code: Operation:

LD	X0	Load contact A of X0 INV
Operation result inversed		
OUT	Y1	Drive Y1 coil

Mnemonic	Function	
\mathbf{P}	Indicator	
Operand	$\mathrm{PO} \mathrm{\sim P} 255$	

Explanation Though it is not necessary to start from number 0, same number can not be used twice or serious error would occur.

Command code: Operation:

LD \quad X0 Load contact A of $X 0$
CJ P10 Skip command CJ to P10

P10		Indicator P10
LD	X1	Load contact A of X1
OUT	Y1	Drive Y1 coil

14.6.3 Description of the Application Commands

	API	Mnemonic Codes		P Command	Function	STEPS	
		16-bit	32-bit			16bit	32bit
Loop control	01	CALL	-	\checkmark	CALL subroutine	3	-
	06	FEND	-	-	The end of main program	1	-
Transmission Comparison	10	CMP	-	\checkmark	Compare	7	13
	11	ZCP	-	\checkmark	Zone compare	9	17
	12	MOV	-	\checkmark	Data Move	5	9
	15	BMOV	-	\checkmark	Block move	7	-
Four Fundamental Operations of Arithmetic	20	ADD	-	\checkmark	Perform the addition of BIN data	7	13
	21	SUB	-	\checkmark	Perform the subtraction of BIN data	7	13
	22	MUL	-	\checkmark	Perform the multiplication of BIN data	7	13
	23	DIV	-	\checkmark	Perform the division of BIN data	7	13
	24	INC	-	\checkmark	Perform the addition of 1	3	5
	25	DEC	-	\checkmark	Perform the subtraction of 1	3	5
Rotation and Displacement	30	ROR	-	\checkmark	Rotate to the right	5	-
	31	ROL	-	\checkmark	Rotate to the left	5	-
Data Processing	40	ZRST	-	\checkmark	Zero Reset	5	-
Contact type logic operation	215	LD\&	DLD\&	-	Contact Logical Operation LD\#	5	9
	216	LD\|	DLD	-	Contact type logic operation LD \#	5	9
	217	LD^	DLD^	-	Contact Logical Operation LD\#	5	9
	218	AND\&	DAND\&	-	Contact Logical Operation AND\#	5	9

14.6.4 Explanation for the Application Commands

Bit Devices			Word Devices						16-bit command (3 STEPS)	
X	Y	M	K	H	KnX KnY KnM	T	C	D	: CALL	
Operands:									32-bit c	
S : Operand S can designate P.										
Operand S of C2000 series can designate P0~P63.									Flag sig	

1. S : The pointer of call subroutine.
2. Edit the subroutine designated by the pointer after FEND instruction.
3. If only CALL instruction is in use, it can call subroutines of the same pointer number with no limit of times.
4. Subroutine can be nested for 5 levels including the initial CALL instruction. (If entering the sixth level, the subroutine won't be executed.)

API	\square	FEND	-	The end of the main program (First End)
06	\square			

	Devi				Word Device				16-bit	and	EP)	
X	Y	M	K	H	KnXKnY KnM	T	C	D	FEND		-	
Operands:									32-bit command			
	era								-		-	
	ta	to	rive	he	instruction is req	uire			Flag sig	Non		

CALL
Command

1. This instruction denotes the end of the main program. It has the same function as that of END instruction when being executed by PLC.
2. CALL must be written after FEND instruction and add SRET instruction in the end of its subroutine. Interruption program has to be written after FEND instruction and IRET must be added in the end of the service program.
3. If several FEND instructions are in use, place the subroutine and interruption service programs between the final FEND and END instruction.
4. After CALL instruction is executed, executing FEND before SRET will result in errors in the program.

API		CMP				
10	\mathbf{D}		\mathbf{P}		S2	D

Explanation

Example

1. \mathbf{S}_{1} : value comparsion $1, \mathbf{S}_{2}$: value comparison $2, \mathbf{D}$: result comparison
2. The contents in \mathbf{S}_{1} and \mathbf{S}_{2} are compared and result is stored in \mathbf{D}.
3. The two comparison values are compared algebraically and the two values are signed binary values. When b15 = 1 in 16-bit instruction, the comparison will regard the value as negative binary values.
4. Designate device $Y 0$, and operand D automatically occupies $Y 0, Y 1$, and $Y 2$.
5. When $\mathrm{X} 10=\mathrm{On}, \mathrm{CMP}$ instruction will be executed and one of $\mathrm{Y} 0, \mathrm{Y}$, and Y 2 will be On. When X10 = Off, CMP instruction will not be executed and Y0, Y 1 , and Y 2 remain their status before $\mathrm{X} 10=$ Off.
6. If the user need to obtain a comparison result with $\geq \leq$, and \neq, make a series parallel connection between Y0 ~ Y2.

7. To clear the comparison result, use RST or ZRST instruction.

API		ZCP		S1 S2 S S D	Done Compare		
11	\mathbf{D}		\mathbf{P}				

	Bit Devices			Word Devices									
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	16-bit command (9 STEPS)	
S_{1}				*	*	*	*	*	*	*	*	ZCP ZCPP	
S_{2}				*	*	*	*	*	*	*	*		
S				*	*	*	*	*	*	*	*	32-bit command (17 STEPS)	
D		*	*									- -	
Operands: \mathbf{S}_{1} : Lower bound of zone comparison $\quad \mathbf{S}_{2}$: Upper bound of zone comparison S: Comparison value D: Comparison result												Flag signal: none	

Explanation

Example

1. \mathbf{S}_{1} : Lower bound of zone comparison \mathbf{S}_{2} : Upper bound of zone comparison S : Comparison value D: Comparison result
2. \mathbf{S} is compared with its $\mathbf{S}_{1} \mathbf{S}_{2}$ and the result is stored in \mathbf{D}.
3. When $\mathbf{S}_{1}>\mathbf{S}_{2}$, the instruction performs comparison by using \mathbf{S}_{1} as the lower/upper bound.
4. The two comparison values are compared algebraically and the two values are signed binary values. When b15 = 1 in 16-bit instruction or b31 = 1 in 32-bit instruction, the comparison will regard the value as negative binary values.
5. Designate device M0, and operand D automatically occupies M0, M1 and M2.
6. When $\mathrm{XO}=\mathrm{On}, \mathrm{ZCP}$ instruction will be executed and one of $\mathrm{MO}, \mathrm{M} 1$, and M2 will be On. When X10 = Off, ZCP instruction will not be executed and M0, M1, and M2 remain their status before $\mathrm{X0}=$ Off.
7. If the user need to obtain a comparison result with $\geq \leq$, and \neq, make a series parallel connection between $\mathrm{Y} 0 \sim \mathrm{Y} 2$.

8. To clear the comparison result, use RST or ZRST instruction.

API		MOV			
12	\mathbf{D}		\mathbf{P}	S D	Moving the data

1. $\mathrm{S}:$ Source of data

D: Destination of data
2. When this instruction is executed, the content of S will be moved directly to D. When this instruction is not executed, the content of D remains unchanged.

1. When $\mathrm{X0}=\mathrm{Off}$, the content in D 10 will remain unchanged. If $\mathrm{XO}=\mathrm{On}$, the value K10 will be moved to D10 data register.
2. When $\mathrm{X} 1=\mathrm{Off}$, the content in D 10 will remain unchanged. If $\mathrm{X} 1=\mathrm{On}$, the present value T0 will be moved to D10 data register.

| API | BMOV | \mathbf{P} | S D D | Block Move |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 15 | | | | |

2. The contents in n registers starting from the device designated by S will be moved to n registers starting from the device designated by D. If n exceeds the actual number of available source devices, only the devices that fall within the valid range will be used.

When X10 = On, the contents in registers D0 ~ D3 will be moved to the 4 registers D20~D23.
Example
1

Example
2

Assume the bit devices $\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}$ and KnS are designated for moving, the number of digits of S and D has to be the same, i.e. their n has to be the same.

Example

3

To avoid coincidence of the device numbers to be moved designated by the two operands and cause confusion, please be aware of the arrangement on the designated device numbers.

When $S>D$, the BMOV command is processed in the order as $(1) \rightarrow$ (2) \rightarrow (3)

When $S<D$, the BMOV command is processed in the order as (3) \rightarrow (2) \rightarrow (1)

| API | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | D ADD | P | S1 S2 (D) BIN Addition |

Bit Devices				Word Devices								16 -bit command (7 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D			
S_{1}				*	*	*	*	*	*	*	*	32-bit command (13 STEPS)		
S_{2}				*	*	*	*	*	*	*	*	- ${ }_{\text {- }}$	STPS	-
D							*	*	*	*	*			
Operands: None												$\begin{array}{r} \text { Flag signal: M1020 } \\ \text { M1021 } \\ \text { M1022 } \end{array}$	Zero flag Borrow flag Carry flag	

Explanation

1. \mathbf{S}_{1} : Summand \mathbf{S}_{2} : Addend D : Sum
2. This instruction adds $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ in BIN format and store the result in D.
3. The highest bit is symbolic bit $0(+)$ and $1(-)$, which is suitable for algebraic addition, e.g. $3+(-9)=-6$.
4. Flag changes in binary addition

16-bit command:
A. If the operation result $=0$, zero flag M1020 $=$ On.
в. If the operation result $<-32,768$, borrow flag $\mathrm{M} 1021=\mathrm{On}$.
с. If the operation result > 32,767, carry flag M1022 = On.

Example 16-bit command:

When $\mathrm{X0} 0=\mathrm{On}$, the content in D 0 will plus the content in D 10 and the sum will be stored in D20.

Remarks Flags and the positive/negative sign of the values:

API	D	SUB	P	(S1) S2 D	Subtraction

Explanation

1. S_{1} : Minuend
\mathbf{S}_{2} : Subtrahend
D: Remainder
2. This instruction subtracts \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ in BIN format and stores the result in \mathbf{D}.
3. The highest bit is symbolic bit $0(+)$ and $1(-)$, which is suitable for algebraic subtraction.
4. Flag changes in binary subtraction

In 16-bit instruction:
If the operation result $=0$, zero flag $\mathrm{M} 1020=\mathrm{On}$.
If the operation result $<-32,768$, borrow flag M1021 $=$ On.
If the operation result $>32,767$, carry flag M1022 $=$ On.
Example In 16-bit BIN subtraction:
When $\mathrm{X} 0=\mathrm{On}$, the content in D 0 will minus the content in D 10 and the remainder will be stored in D20.

API		MUL				
22	D		\mathbf{P}		S2	DIN Multiplication

	Bit Devices			Word Devices								16-bit command (7 STEPS)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	MUL		MULP	
S_{1}				*	*	*	*	*	*	*	*	32-bit command (13 STEPS)			
S_{2}				*	*	*	*	*	*	*	*	:3-bit	d	(
D							*	*	*	*	*	Flag signal: None			
Operands: In 16-bit instruction, D occupies 2 consecutive devices.															

Explanation

1. \mathbf{S}_{1} : Multiplicand \mathbf{S}_{2} : Multiplication D: Product
2. This instruction multiplies \mathbf{S}_{1} by \mathbf{S}_{2} in BIN format and stores the result in D. Be careful with the positive/negative signs of $\mathbf{S}_{1}, \mathbf{S}_{2}$ and D when doing 16-bit and 32-bit operations. 16-bit command:

Symbol bit $=0$ refers to a positive value.
Symbol bit = 1 refers to a negative value.
When D serves as a bit device, it can designate K1 ~ K4 and construct a 16-bit result, occupying consecutive 2 groups of 16 -bit data.

The 16 -bit D0 is multiplied by the 16 -bit D10 and brings forth a 32 -bit product. The higher 16-bit are stored in D21 and the lower 16-bit are stored in D20. On/Off of the most left bit indicates the positive/negative status of the result value.

API		DIV				
23	\mathbf{D}		\mathbf{P}	S1	S2	D

Bit Devices				Word Devices								Th-bit command (7 STETPS)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S_{1}				*	*	*	*	*	*	*	*				
S_{2}				*	*	*	*	*	*	*	*	:32-bit	and	STEPS	
D							*	*	*	*	*	-	-		

Operands:
Flag signal: none`
In 16-bit instruction, D occupies 2 consecutive devices.
2. This instruction divides \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ in BIN format and stores the result in D. Be careful with the positive/negative signs of $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}$ and D when doing 16-bit and 32-bit operations.

16-bit instruction:

If D is the bit device, it allocates K1~K14 to 16-bit and occupies 2 continuous sets of quotient and remainder.

Example When X0 = On, D0 will be divided by D10; the quotient will be stored in D20 and remainder in D21. On/Off of the highest bit indicates the positive/negative value of the result.

DIV	D0	D10	D20	
	DIV	D0	D10	K4Y0

| API | | INC | | | D |
| :---: | :---: | :---: | :---: | :---: | :--- |\quad Increment: BIN plus 1

Explanation

1. D: Destination device
2. If the instruction is not a pulse execution one, the content in the designated device D will plus " 1 " in every scan period whenever the instruction is executed.
3. This instruction adopts pulse execution instructions (INCP).
4. In 16-bit operation, 32,767 pluses 1 and obtains -32,768. In 32-bit operation, 2,147,483,647 pluses 1 and obtains -2,147,483,648.
Example When X0 goes from Off to On, the content in DO pluses 1 automatically.

API					
25	\mathbf{D}			DC	\mathbf{P}

Bit Devices				Word Devices								16-bit command (3 STEPS)	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	DEC	
D				*	*	*	*	*				32-bit command (5 STEPS)	
Operands: none												$\frac{-1}{-}$	-
												Flag signal: none	

Explanation D: Destination

1. If the command is not a pulse execution type, the content in the designated device D will minus " 1 " in every scan period whenever the instruction is executed.
2. This instruction adopts pulse execution instructions (DECP).
3. In 16-bit operation, $-32,768$ minuses 1 and obtains 32,767. In 32-bit operation, $-2,147,483,648$ minuses 1 and obtains 2,147,483,647.

Example
When X0 goes from Off to On, the content in D0 minuses 1 automatically.

API	- ROR		P	D	Rotate to the Right
30					

	Bit Devices			Word Devices								16 bit command (5 STEPS)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ROR		ROR	
D							*	*	*	*	*				
n				*	*							32-bit			
Operands: D: if in KnY and KnM, only K4 (16-bit) is valid n : $\mathrm{n}=\mathrm{K} 1 \sim \mathrm{~K} 16$ (16-bit)												Flag si	M102	arry	

Explanation 1. D: Device to be rotated \mathbf{n} : Number of bits to be rotated in 1 rotation
2. This instruction rotates the device content designated by \mathbf{D} to the right for n bits.
3. This instruction adopts pulse execution instructions (RORP).

Example When X 0 goes from Off to On, the 16-bit (4 bits as a group) in D10 will rotate to the right, as shown in the figure below. The bit marked with $※$ will be sent to carry flag M1022.

API	ROL		(D) n	Rotate to the Left
31		P		

Explanation

1. D: Device to be rotated; \mathbf{n} : Number of bits to be rotated in 1 rotation
2. This instruction rotates the device content designated by \mathbf{D} to the left for n bits.
3. This instruction adopts pulse execution instructions (ROLP).

Example When X0 goes from Off to On, the 16-bit (4 bits as a group) in D10 will rotate to the left, as shown in the figure below. The bit marked with $※$ will be sent to carry flag M1022.

API	-			
40	ZRST		(D1) (D2)	Zero Reset

Explanation
D_{1} : Start device of the range to be reset
D_{2} : End device of the range to be reset When $D_{1}>D_{2}$, only operands designated by D_{2} will be reset.

Example

1. When $\mathrm{XO}=\mathrm{On}$, auxiliary relays M300~M399 will be reset to Off.
2. When $\mathrm{X} 1=\mathrm{On}, 16$ counters $\mathrm{C} 0 \sim \mathrm{C} 127$ will all be reset (writing in 0 ; contact and coil being reset to Off).
3. When $\mathrm{X} 10=$ On, timers $\mathrm{T} 0 \sim \mathrm{~T} 127$ will all be reset (writing in 0 ; contact and coil being reset to Off).
4. When $\mathrm{X} 3=\mathrm{On}$, data registers $\mathrm{D} 0 \sim \mathrm{D} 100$ will be reset to 0 .

Remarks 1. Devices, e.g. bit devices Y, M, S and Word Devices T, C, D, can use RST instruction.
2. API 16 FMOV instruction is also to send K0 to Word Devices T, C, D or bit registers $\mathrm{KnY}, \mathrm{KnM}, \mathrm{KnS}$ for reset.

API					
215~ 217	D	LD\#		S1	S2

Explanation

1. \mathbf{S}_{1} : Data source device $1 \quad \mathbf{S}_{2}$: Data source device 2
2. This instruction compares the content in \mathbf{S}_{1} and \mathbf{S}_{2}. If the result is not " 0 ", the continuity of the instruction is enabled. If the result is " 0 ", the continuity of the instruction is disabled.
3. LD\# (\#: \& , |, ^) instruction is used for direct connection with BUS.

API No.	$\begin{gathered} 16 \text {-bit } \\ \text { instruction } \end{gathered}$	$\begin{gathered} 32 \text {-bit } \\ \text { instruction } \end{gathered}$	Continuity condition				No-continuity condition			
215	LD\&	DLD\&		\&	S_{2}		S_{1}	\&	S_{2}	0
216	LD\|	DLD		\|	S_{2}		S_{1}	\|	S_{2}	$=0$
217	LD^	DLD^		\wedge	S_{2}		S_{1}	\wedge	S_{2}	$=0$

4. \&: Logical "AND" operation
5. I: Logical "OR" operation
6. ^: Logical "XOR" operation
7. When the result of logical AND operation of CO and $\mathrm{C} 10 \neq 0, \mathrm{Y} 10=\mathrm{On}$.
8. When the result of logical OR operation of D200 and D300 $=0$ and $\mathrm{X} 1=\mathrm{On}$, Y11 = On will be retained.

| API | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 218~
 220 | D | AND\# | S1 S2 | Contact Logical Operation AND\# |

	Bit Devices			Word Devices								16-bit command (5 STEPS)			
	X	Y	M	K	H	KnX KnY KnM			T	C	D	: AND\#		ZRS	
S_{1}				*	*	*	*	*	*	*	*				
S_{2}				*	*	*	*	*	*	*	*	32-bit command (9 STEPS)			
Operands: \#: \&, \|, ^												:DAND\#			
Please refer to the specifications of each model for the range of operands.												Flag signal: none			

Explanation

1. \mathbf{S}_{1} : Data source device $1 \quad \mathbf{S}_{2}$: Data source device 2
2. This instruction compares the content in \mathbf{S}_{1} and \mathbf{S}_{2}. If the result is not " 0 ", the continuity of the instruction is enabled. If the result is " 0 ", the continuity of the instruction is disabled.
3. AND\# (\#: \& , |, ${ }^{\wedge}$) is an operation instruction used on series contacts.

API No.	$\begin{gathered} 16 \text {-bit } \\ \text { instruction } \end{gathered}$	$\begin{gathered} 32 \text {-bit } \\ \text { instruction } \end{gathered}$	Continuity condition				No-continuity condition			
218	AND \&	DAND\&	S_{1}	\&	S_{2}		S_{1}	\&	S_{2}	$=0$
219	AND\|	DAND\|	S_{1}		S_{2}		S_{1}	\|	S_{2}	0
220	AND^	DAND^		\wedge	S_{2}	$\neq 0$	S_{1}	\wedge	S_{2}	$=0$

4. \&: Logical "AND" operation
5. |: Logical "OR" operation
6. ^: Logical "XOR" operation
7. When $\mathrm{X} 0=\mathrm{On}$ and the result of logical AND operation of C 0 and $\mathrm{C} 10 \neq 0, \mathrm{Y} 10=$ On.
8. When $\mathrm{X} 1=\mathrm{Off}$ and the result of logical OR operation of D 10 and $\mathrm{D} 0 \neq 0$ and $\mathrm{X} 1=$ On, Y11 $=$ On will be retained.
9. When $\mathrm{X} 2=$ On and the result of logical XOR operation of 32-bit register D200 (D201) and 32-bit register D100 (D101) $\neq 0$ or M3 $=$ On, M50 $=$ On.

| API | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $221 \sim$
 223 | D | | | |

Explanation

1. \mathbf{S}_{1} : Data source device $1 \quad \mathbf{S}_{2}$: Data source device 2
2. This instruction compares the content in \mathbf{S}_{1} and \mathbf{S}_{2}. If the result is not " 0 ", the continuity of the instruction is enabled. If the result is " 0 ", the continuity of the instruction is disabled.
3. OR\# (\#: \& , |, ${ }^{\wedge}$) is an operation instruction used on parallel contacts.

API No.	$\begin{gathered} 16 \text {-bit } \\ \text { instruction } \end{gathered}$	$\begin{gathered} 32 \text {-bit } \\ \text { instruction } \end{gathered}$	Continuity condition				No-continuity condition			
221	OR\&	DOR\&	S_{1}	\&	S_{2}		S_{1}	\&	S_{2}	0
222	OR\|	DOR\|	S_{1}	\|	S_{2}		S_{1}		S_{2}	$=0$
223	OR^{\wedge}	DOR^		\wedge	S_{2}		S_{1}	\wedge	S_{2}	$=0$

4. \&: Logical "AND" operation
5. |: Logical "OR" operation
6. \wedge : Logical "XOR" operation

When $\mathrm{X} 1=\mathrm{On}$ and the result of logical AND operation of C 0 and $\mathrm{C} 10 \neq 0, \mathrm{Y} 10=\mathrm{On}$.

1. M 60 will be On , if X 2 and M 30 are On with one of the following two conditions: 1 . The OR operation result of 32-bit register D10 (D11) and 32-bit register D20(D21) does not equal to 0.2. The XOR operation result of 32 -bit counter C235 and 32bits register D200 (D201) does not equal 0.

Explanation

1. S_{1} : Data source device $1 \quad S_{2}$: Data source device 2
2. This instruction compares the content in \mathbf{S}_{1} and \mathbf{S}_{2}. Take API224 (LD=) for example, if the result is " $=$ ", the continuity of the instruction is enabled. If the result is " \neq ", the continuity of the instruction is disabled.
3. LD $(\ldots:=,>,<,<>, \leq, \geq)$ instruction is used for direct connection with BUS.

API No.	16 -bit instruction	32 -bit instruction	Continuity condition	No-continuity condition
224	$\mathrm{LD}=$	$\mathrm{DLD}=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
225	$\mathrm{LD}>$	$\mathrm{DLD}>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
226	$\mathrm{LD}<$	$\mathrm{DLD}<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
228	$\mathrm{LD}<>$	$\mathrm{DLD}<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
229	$\mathrm{LD}<=$	$\mathrm{DLD}<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
230	$\mathrm{LD}>=$	$\mathrm{DLD}>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example

1. When the content in $\mathrm{C} 10=\mathrm{K} 200, \mathrm{Y} 10=\mathrm{On}$.
2. When the content in $\mathrm{D} 200>\mathrm{K}-30$ and $\mathrm{X} 1=\mathrm{On}, \mathrm{Y} 11=\mathrm{On}$ will be retained.

Explanation

1. $\begin{array}{lll}\mathbf{S}_{1} \text { : Data source device } 1 & \mathbf{S}_{2} \text { : } \text { Data source device } 2\end{array}$
2. This instruction compares the content in \mathbf{S}_{1} and \mathbf{S}_{2}. Take API232 (AND=) for example, if the result is " $=$ ", the continuity of the instruction is enabled. If the result is " \neq ", the continuity of the instruction is disabled.
3. AND ($※:=,>,<,<>, \leq, \geq$) is a comparison instruction is used on series contacts

API No.	$16-$ bit instruction	32-bit instruction	Continuity condition	No-continuity condition
232	AND $=$	DAND $=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
233	AND $>$	DAND $>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
234	AND $<$	DAND $<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
236	AND $<>$	DAND $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
237	AND $<=$	DAND $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
238	AND $>=$	DAND $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example

1. When $\mathrm{X} 0=\mathrm{On}$ and the content in $\mathrm{C} 10=\mathrm{K} 200, \mathrm{Y} 10=\mathrm{On}$.
2. When $\mathrm{X} 1=\mathrm{Off}$ and the content in $\mathrm{D} 0 \neq \mathrm{K}-10, \mathrm{Y} 11=\mathrm{On}$ will be retained.
3. When $\mathrm{X} 2=\mathrm{On}$ and the content in 32-bit register $\mathrm{D} 0(\mathrm{D} 11)<678,493$ or $\mathrm{M} 3=$ $\mathrm{On}, \mathrm{M} 50=\mathrm{On}$.

	Bit Devices			Word Devices								16-bit command (5 STEEPS)	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	OR*	
S_{1}				*	*	*	*	*	*	*	*	32-bit command (9 STEPS)	
S_{2}				*	*	*	*	*	*	*	*		
Operands: $※:=,>,<,<>, \leqq, \geqq$ Please refer to the specifications of each model for the range of operands.													

Explanation

1. $\begin{array}{lll}\mathbf{S}_{1} \text { : Data source device } 1 \quad \mathbf{S}_{2} \text { : Data source device } 2\end{array}$
2. This instruction compares the content in \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$. Take API240 (OR=) for example, if the result is " $=$ ", the continuity of the instruction is enabled. If the result is " \neq ", the continuity of the instruction is disabled.
3. OR $※(\ldots:=,>,<,<>, \leq, \geq$) is an comparison instruction used on parallel contacts.

API No.	16 -bit instruction	32 -bit instruction	Continuity condition	No-continuity condition
232	AND $=$	DAND $=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
233	AND $>$	DAND $>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
234	AND $<$	DAND $<$	$\mathbf{S}_{1}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
236	AND $<>$	DAND $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
237	AND $<=$	DAND $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
238	AND $>=$	DAND $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example

1. When $\mathrm{X} 1=\mathrm{On}$ and the present value of $\mathrm{C} 10=\mathrm{K} 200, \mathrm{Y} 0=\mathrm{On}$.
2. When $\mathrm{X} 1=\mathrm{Off}$ and the content in $\mathrm{D} 0 \neq \mathrm{K}-10, \mathrm{Y} 11=\mathrm{On}$ will be retained.
3. M50 will be On when X2=On and the content of 32-bit register D0(D11) <678,493 or M3= On.

14.6.5 Description to drive's special commands

API	RPR		S1	S2
139		\mathbf{P}	Read the AC motor drive's parameters	

Bit Devices				Word Devices							16-bit command (5 STEPS)		
	X	Y	M	K	H	KnX	KnY KnM	T	C	D		RPRP	
S_{1}				*	*					*	3-bit command		
S_{2}										*	32-bit command		
Operands: none											Flag signal: none		
Explanation				\mathbf{S}_{1} : Data address for reading \mathbf{S}_{2} : The register that saves the read da									

API		WPR		S1 S2	Write the AC motor drive's parameters
140		\mathbf{P}			

Bit Devices				Word Devices								16-bit command (5 STEPS)	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	WPR	WPRP
S_{1}				*	*						*		
S_{2}				*	*						*		
Operands: None												Flag signal: none	

Explanation \mathbf{S}_{1} : The data for writing. \mathbf{S}_{2} : The parameters address for the write data.

Example

1. It will read the data in parameter H 2100 of the C 2000 and write into $\mathrm{D} 0 ; \mathrm{H} 2101$ is read and write into D1.
2. When M0=On, data in D10 will be written into Pr. H2001 of C2000.
3. When $\mathrm{M} 1=\mathrm{ON}$, data in H 2 will be written into Pr . H 2001 of C 2000 , which is to activate the AC motor drive.
4. When $\mathrm{M} 2=\mathrm{ON}$, data in H 1 will be written into H 2000 of C 2000 , which is to stop the $A C$ motor drive.
5. When data writing successfully, M1017 will be on.

API	FPID		(S1) S2 S3 S4	PID control for the AC motor drive
141		P	(51)	

	Bit Devices			Word Devices							16-bit command (9 STEEPS)	
	X	Y	M	K	H	KnX	KnY KnM	T	C	D	FPID FPIDP	
S_{1}				*	*					*		
S_{2}				*	*					*	32-bit command	
S_{3}				*	*					*	- - -	
S_{4}				*	*					*		

Operands: None
Flag signal: None
Explanation 1. \mathbf{S}_{1} : PID Set Point Selection, \mathbf{S}_{2} : Proportional Gain P, \mathbf{S}_{3} : Integral Time I, \mathbf{S}_{4} : Derivative control D
2. This command FPID can control the PID parameters of the AC motor drive directly, including Pr.08.00 PID set point selection, Pr.08.01 Proportional gain (P), Pr.08.02 Integral time (I) and Pr. 08.03 Derivative control (D)

Example

1. Assume that when $\mathrm{MO}=\mathrm{ON}, \mathbf{S}_{1}$ is set to 0 (PID function is disabled), $\mathbf{S}_{2}=0, \mathbf{S}_{3}=1$ (unit: 0.01 seconds) and $\mathbf{S}_{4}=1$ (unit: 0.01 seconds).
2. Assume that when $\mathrm{M} 1=\mathrm{ON}, \mathbf{S}_{1}$ is set to 0 (PID function is disabled), $\mathbf{S}_{2}=1$ (unit: $0.01), \mathbf{S}_{3}=0$ and $\mathbf{S}_{4}=0$.
3. Assume that when $\mathrm{M} 2=\mathrm{ON}, \mathbf{S}_{1}$ is set to 1 (frequency is inputted by digital keypad), $\mathbf{S}_{2}=1$ (unit: 0.01), $\mathbf{S}_{3}=0$ and $\mathbf{S}_{4}=0$.
4. D1027: frequency command after PID calculation.

API	FREQ		S1 S2 S3 S S	S
142	Operation control of the AC motor drive			

Bit Devices				Word Devices							16-bit command (7	TEPS)	
	X	Y	M	K	H	KnX	KnY KnM	T	C	D	FREQ	FREQP	
S_{1}				*	*					*	32-bit command		
S_{2}				*	*					*		-	
S_{3}				*	*					*			

Explanation 1. \mathbf{S}_{1} : frequency command, \mathbf{S}_{2} : acceleration time, \mathbf{S}_{3} : deceleration time
2. This command FREQ can control frequency command, acceleration time and deceleration time of the AC motor drive. Special register control is shown as following:

M1025: controls RUN (On)/STOP (Off) of the drive. (Run is valid when Servo On (M1040 On).)
M1026: Operation directions FWD (On)/REV (Off) of the drive.
M1040: controls Servo On (On)/ Servo Off (Off).
M1042: enable quick stop(ON)/ disable quick stop(Off)
M1044: enable Stop (On)/ disable stop(Off)
M1052: frequency locked (On)/ disable frequency locked(Off)

Example
 1. M1025: controls RUN (On)/STOP (Off) of the drive. M1026: operation direction

 FWD (On)/REV (Off) of the drive. M1015: frequency attained.2. When $\mathrm{M} 10=\mathrm{ON}$, setting frequency command of the AC motor drive to $\mathrm{K} 300(3.00 \mathrm{~Hz})$ and acceleration/deceleration time is 0 .
3. When $\mathrm{M} 11=\mathrm{ON}$, setting frequency command of the AC motor drive to $\mathrm{K} 3000(30.00 \mathrm{~Hz})$, acceleration time is 50 and deceleration time is 60 .

Bit Devices				Word Devices							16-bit command (7 STEPS)		
	X	Y	M	K	H	KnX	KnY KnM	T	C	D			
S_{1}				*	*						32-bit comm		
S_{2}				*	*						32-bit command	-	
S_{3}				*	*								
D								*	*	*			
Operand: none Flag signal: M1028													

Explanation

1. $\mathbf{S}_{\mathbf{1}}$: Slave station number, \mathbf{S}_{2} : main index, \mathbf{S}_{3} : sub-index + bit length, \mathbf{D} : save address
2. Command CANRX can read the corresponding slave. Index. When executing this command, it will send SDO message to the slave. At this time, M1066 and M1067 are 0 but when reading is complete M1066 will set to 1 . If the slave replied an accurate response, the value will be written to the designated register and M1067 is now set to 1 . However, if the slave replied an inaccurate response, this error message will be recorded in D1076~D1079.

Example M1002: touch once to activate PLC and change K4M400=K1. After the change, different message will be displayed when M1066 is set to 1 .

API					
264		CANTX	\mathbf{P}	S1 S2 S3 S4	Write CANopen slave data

Bit Devices				Word Devices									
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	16-bit command (7 FREQ	$\frac{\operatorname{STEPS})}{\text { FREQP }}$
S_{1}				*	*								
S_{2}				*	*				*	*	*	32-bit command	
S_{3}				*	*							- -	-
S_{4}				*	*							Flag signal: M1028	
Operands: None													

1. \mathbf{S}_{1} : slave station number, \mathbf{S}_{2} : the address to write, \mathbf{S}_{3} : main index, \mathbf{S}_{4} : sub-index+ bit length.
2. Command CANTX can read the corresponding index of the slave. When executing this command, it will send SDO message to the slave. At this time, M1066 and M1067 are 0 but when reading is complete M1066 will set to 1 . If the slave replied an accurate response, the value will be written to the designated register and M1067 is now set to 1 . However, if the slave replied an inaccurate response, this error message will be recorded in D1076~D1079.

API	CANFLS	\mathbf{P}	D	Update the mapping special D of CANopen
265				

Explanation 1. D: the special D for update.

2. CANFLS can update the Special D command. When it executes in read only mode, it sends equivalent message as CANRX to the slave and saves the slave response to this particular Special D. When it executes in read/write mode, it sends equivalent message as CANTX to the slave and saves this special D value to the corresponding slave.
3. M1066 and M1067 are both 0 . When reading is complete, M1066 will be 1 and this value will write to the designated register if the slave replies an accurate response. When slave replies a fault response then M1067 will be 0 and this error message will be recorded to D1076~D1079.

14.7 Error and Troubleshoot

$\left.$| Fault | ID | Fault Descript | Corrective Action |
| :---: | :---: | :--- | :--- |
| PLod | 50 | Data write error | Check if there is error in the program and
 download the program again. |
| PLSv | 51 | Data write error when executing | Re-apply the power and download the
 program again. |
| PLdA | 52 | Program upload error | Upload again. If error occurs continuously,
 please return to the factory. |
| PLFn | 53 | Command error when download
 program | Check if there is error in the program and
 download the program again. |
| PLor | 54 | Program capacity exceeds memory
 capacity | Re-apply the power and download the
 program again. |
| PLFF | 55 | Command error when executing | Check if there is error in the program and
 download the program again. |
| PLSn | 56 | Check sum error | Check if there is error in the program and
 download the program again. |
| PLEd | 57 | There is no "END" command in the
 program | Check if there is error in the program and
 download the program again. |
| PLCr | 58 | The command MC is continuous
 used more than 9 times | Check if there is error in the program and
 download the program again. |
| PLdF | 59 | Download program error
 PLSF | 60 | | PLC scan time over-time if there is error in the program and |
| :--- |
| download the program again. | \right\rvert\, | Check if the program code is inaccurately |
| :--- |
| written and download the program again. |

Chapter 15 Suggestions and Error Corrections for Standard AC Motor Drives

15-1 Maintenance and Inspections
15-2 Greasy Dirt Problem
15-3 Fiber Dust Problem
15-4 Erosion Problem
15-5 Industrial Dust Problem
15-6 Wiring and Installation Problem
15-7 Multi-function Input/Output Terminals Problem

The AC motor drive has a comprehensive fault diagnostic system that includes several different alarms and fault messages. Once a fault is detected, the corresponding protective functions will be activated. The following faults are displayed as shown on the AC motor drive digital keypad display. The six most recent faults can be read from the digital keypad or communication.

The AC motor drive is made up by numerous components, such as electronic components, including IC, resistor, capacity, transistor, and cooling fan, relay, etc. These components can't be used permanently. They have limited-life even under normal operation. Preventive maintenance is required to operate this AC motor drive in its optimal condition, and to ensure a long life.

Check your AC motor drive regularly to ensure there are no abnormalities during operation and follows the precautions:

CAUTION
W Wait 5 seconds after a fault has been cleared before performing reset via keypad of input terminal.
\square When the power is off after 5 minutes for $\leqq 22 \mathrm{~kW}$ models and 10 minutes for \geqq 30kW models, please confirm that the capacitors have fully discharged by measuring the voltage between + and -. The voltage between + and - should be less than 25VDC.
\square Only qualified personnel can install, wire and maintain drives. Please take off any metal objects, such as watches and rings, before operation. And only insulated tools are allowed.
\boxtimes Never reassemble internal components or wiring.
\square Make sure that installation environment comply with regulations without abnormal noise, vibration and smell.

15-1 Maintenance and Inspections

Before the check-up, always turn off the AC input power and remove the cover. Wait at least 10 minutes after all display lamps have gone out, and then confirm that the capacitors have fully discharged by measuring the voltage between DC+ and DC-. The voltage between DC+ and DC-should be less than 25VDC.

Ambient environment

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
Check the ambient temperature, humidity, vibration and see if there are any dust, gas, oil or water drops	Visual inspection and measurement with equipment with standard specification	\bigcirc		
If there are any dangerous objects	Visual inspection	\bigcirc		

Voltage

Check Items	Maintenance 		Methods and Criterion	

Digital Keypad Display

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
Is the display clear for reading	Visual inspection	\bigcirc		
Any missing characters	Visual inspection	\bigcirc		

Mechanical parts

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any abnormal sound or vibration	Visual and aural inspection		\bigcirc	
If there are any loose screws	Tighten the screws		\bigcirc	
If any part is deformed or damaged	Visual inspection		\bigcirc	
If there is any color change by overheating	Visual inspection		\bigcirc	
If there is any dust or dirt	Visual inspection		\bigcirc	

Main circuit

Check Items	Methods and Criterion		Maintenance Period	
		Daily	Half Year	One Year
If there are any loose or missing screws	Tighten or replace the screw	\bigcirc		
If machine or insulator is deformed, cracked, damaged or with color change due to overheating or ageing	Visual inspection NOTE: Please ignore the color change of copper plate			
If there is any dust or dirt	Visual inspection		\bigcirc	

Terminals and wiring of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If the terminal or the plate is color change or deformation due to overheat	Visual inspection		\bigcirc	
If the insulator of wiring is damaged or color change	Visual inspection		\bigcirc	
If there is any damage	Visual inspection	\bigcirc		

DC capacity of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any leak of liquid, color change, crack or deformation	Visual inspection	\bigcirc		
If the safety valve is not removed? If valve is inflated?	Visual inspection	\bigcirc		
Measure static capacity when required		\bigcirc		

Resistor of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any peculiar smell or insulator cracks due to overheat	Visual inspection, smell	\bigcirc		
If there is any disconnection	Visual inspection	\bigcirc		
If connection is damaged?	Measure with multimeter with standard specification	\bigcirc		

Transformer and reactor of main circuit

Check Items	Maintenance			
	Methods and Criterion		Period	
	Daily	Half Year	One Year	
If there is any abnormal vibration or peculiar smell	Visual, aural inspection and smell	\bigcirc		

Magnetic contactor and relay of main circuit

Check Items	Maintenance			
		Period		
		Daily	Half Year	One Year
If there are any loose screws	Visual and aural inspection	\bigcirc		
If the contact works correctly	Visual inspection	\bigcirc		

Printed circuit board and connector of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there are any loose screws and connectors	Tighten the screws and press the connectors firmly in place.		\bigcirc	
If there is any peculiar smell and color change	Visual and smell inspection		\bigcirc	
If there is any crack, damage, deformation or corrosion	Visual inspection		\bigcirc	
If there is any liquid is leaked or deformation in capacity	Visual inspection		\bigcirc	

Cooling fan of cooling system

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
If there is any abnormal sound or vibration	Visual, aural inspection and turn the fan with hand (turn off the power before operation) to see if it rotates smoothly			
If there is any loose screw	Tighten the screw		\bigcirc	
If there is any color change due to overheat	Change fan		\bigcirc	

Ventilation channel of cooling system

Check Items	Maintenance			
		Period		
		Daily	Half Year	One Year
If there is any obstruction in the heat sink, air intake or air outlet	Visual inspection		\bigcirc	

\Rightarrow NOTE

Please use the neutral cloth for clean and use dust cleaner to remove dust when necessary.

15-2 Greasy Dirt Problem

Serious greasy dirt problems generally occur in processing industries such as machine tools, punching machines and so on. Please be aware of the possible damages that greasy oil may cause to your drive:

1. Electronic components that silt up with greasy oil may cause the drive to burn out or even explode.
2. Most greasy dirt contains corrosive substances that may damage the drive.

Solution:

Install the AC motor drive in a standard cabinet to keep it away from dirt. Clean and remove greasy dirt regularly to prevent damage of the drive.

15-3 Fiber Dust Problem

Serious fiber dust problems generally occur in the textile industry. Please be aware of the possible damages that fiber may cause to your drives:

1. Fiber that accumulates or adheres to the fans will lead to poor ventilation and cause overheating problems.
2. Plant environments in the textile industry have higher degrees of humidity that may cause the drive to burn out, become damaged or explode due to wet fiber dust adhering to the devices.
Solution:
Install the AC motor drive in a standard cabinet to keep it away from fiber dust. Clean and remove fiber dust regularly to prevent damage to the drive.

15-4 Erosion Problem

Erosion problems may occur if any fluids flow into the drives. Please be aware of the damages that erosion may cause to your drive.

1. Erosion of internal components may cause the drive to malfunction and possibility to explode.

Solution:
Install the AC motor drive in a standard cabinet to keep it away from fluids. Clean the drive regularly to prevent erosion.

15-5 Industrial Dust Problem

Serious industrial dust pollution frequently occurs in stone processing plants, flour mills, cement plants, and so on. Please be aware of the possible damage that industrial dust may cause to your drives:

1. Dust accumulating on electronic components may cause overheating problem and shorten the service life of the drive.
2. Conductive dust may damage the circuit board and may even cause the drive to explode.

Solution:
Install the AC motor drive in a standard cabinet and cover the drive with a dust cover. Clean the cabinet and ventilation hole regularly for good ventilation.

15-6 Wiring and Installation Problem

When wiring the drive, the most common problem is wrong wire installation or poor wiring. Please be aware of the possible damages that poor wiring may cause to your drives:

1. Screws are not fully fastened. Occurrence of sparks as impedance increases.
2. If a customer has opened the drive and modified the internal circuit board, the internal components may have been damaged.

Solution:

Ensure all screws are fastened when installing the AC motor drive. If the AC motor drive functions abnormally, send it back to the repair station. DO NOT try to reassemble the internal components or wire.

15-7 Multi-function Input/Output Terminals Problem

Multi-function input/output terminal errors are generally caused by over usage of terminals and not following specifications. Please be aware of the possible damages that errors on multi-function input/output terminals may cause to your drives:

1. Input/output circuit may burns out when the terminal usage exceeds its limit.

Solution:
Refer to the user manual for multi-function input output terminals usage and follow the specified voltage and current. DO NOT exceed the specification limits.

[^0]: NOTE
 The content of this manual may be revised without prior notice. Please consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation

[^1]: Pr.03-03=10\%
 Pr.03-07~03-09 (Positive/Negative Bias Mode)
 0: No bias
 1: Lower than or equal to bias
 2: Greater than or equal to bias
 3: The absolute value of the bias voltage while serving as the center
 4: Serve bias as the center
 Pr.03-10 (Analog Frequency Command forReverse Run)
 0 : Negative frequency is not valid.
 Forward and reverse run is controlled by digital keypad or external terminal
 1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control. Pr.03-11 Analog Input Gain (AVI) $=100 \%$

[^2]: | 96-17 |
 | :---: |
 | 96-18 |
 | 96-9 |
 | 56-39 |
 | 76-3 |
 | 15-3 |

 ## Present Fault Record

 Second Most Recent Fault Record
 Third Most Recent Fault Record
 Fourth Most Recent Fault Record
 Fifth Most Recent Fault Record
 Sixth Most Recent Fault Record

 ## Settings

 0 : No fault record
 1: Over-current during acceleration (ocA)
 2: Over-current during deceleration (ocd)
 3: Over-current during constant speed(ocn)
 4: Ground fault (GFF)
 5: IGBT short-circuit (occ)
 6: Over-current at stop (ocS)
 7: Over-voltage during acceleration (ovA)
 8: Over-voltage during deceleration (ovd)
 9: Over-voltage during constant speed (ovn)
 10: Over-voltage at stop (ovS)
 11: Low-voltage during acceleration (LvA)
 12: Low-voltage during deceleration (Lvd)
 13: Low-voltage during constant speed (Lvn)
 14: Stop mid-low voltage (LvS)
 15: Phase loss protection (OrP)
 16: IGBT over-heat (oH1)
 17: Capacitance over-heat (oH2) (for 40hp above)
 18: tH1o (TH1 open: IGBT over-heat protection error)
 19: tH2o (TH2 open: capacitance over-heat protection error)

[^3]: Explanation

